Sentra Launches Breakthrough AI Classification Capabilities!
All Resources
In this article:
minus iconplus icon
Share the Blog

Minimizing your Data Attack Surface in the Cloud

November 8, 2022
4
Min Read

The cloud is one of the most important developments in the history of information technology. It drives innovation and speed for companies, giving engineers instant access to virtually any type of workload with unlimited scale.

But with opportunity comes a price - moving at these speeds increases the risk that data ends up in places that are not monitored for governance, risk and compliance issues. Of course, this increases the risk of a data breach, but it’s not the only reason we’re seeing so many breaches in the cloud era. Other reasons include: 

  • Systems are being built quickly for business units without adequate regard for security
  • More data is moving through the company as teams use and mine data more efficiently using tools such as cloud data warehouses, BI, and big data analytics
  • New roles are being created constantly for people who need to gain access to organizational data
  • New technologies are being adopted for business growth which require access to vast amounts of data - such as deep learning, novel language models, and new processors in the cloud
  • Anonymous cryptocurrencies have made data leaks lucrative.
  • Nation state powers are increasing cyber attacks due to new conflicts

Ultimately, there are only two methods which can mitigate the risk of cloud data leaks - better protecting your cloud infrastructure, and minimizing your data attack surface.

Protecting Cloud Infrastructure

Companies such as Wiz, Orca Security and Palo Alto provide great cloud security solutions, the most important of which is a Cloud Security Posture Management tool. CSPM tools help security teams to understand and remediate infrastructure related cloud security risks which are mostly related to misconfigurations, lateral movements of attackers, and vulnerable software that needs to be patched.

However, these tools cannot mitigate all attacks. Insider threats, careless handling of data, and malicious attackers will always find ways to get a hold of organizational data, whether it is in the cloud, in different SaaS services, or on employee workstations. Even the most protected infrastructure cannot withstand social engineering attacks or accidental mishandling of sensitive data. The best way to mitigate the risk for sensitive data leaks is by minimizing the “data attack surface” of the cloud.

What is the "Data Attack Surface"?

Data attack surface is a term that describes the potential exposure of an organization’s sensitive data in the event of a data breach. If a traditional attack surface is the sum of all an organization’s vulnerabilities, a data attack surface is the sum of all sensitive data that isn’t secured properly. 

The larger the data attack surface - the more sensitive data you have - the higher the chances are that a data breach will occur.

There are several ways to reduce the chances of a data breach:

  • Reduce access to sensitive data
  • Reduce the number of systems that process sensitive data
  • Reduce the number of outputs that data processing systems write
  • Address misconfigurations of the infrastructure which holds sensitive data
  • Isolate infrastructure which holds sensitive data
  • Tokenize data
  • Encrypt data at rest
  • Encrypt data in transit
  • Use proxies which limit and govern access to sensitive data of engineers

Reduce Your Data Attack Surface by using a Least Privilege Approach

The less people and systems have access to sensitive data, the less chances a misconfiguration or an insider will cause a data breach. 

The most optimal method of reducing access to data is by using the least privilege approach  of only granting access to entities that need the data.  The type of access is also important  - if read-only access is enough, then it’s important to make sure that write access or administrative access is not accidentally granted. 

To know which entities need what access, engineering teams need to be responsible for mapping all systems in the organization and ensuring that no data stores are accessible to entities which do not need access.

Engineers can get started by analyzing the actual use of the data using cloud tools such as Cloudtrail.  Once there’s an understanding of which users and services access infrastructure with sensitive data, the actual permissions to the data stores should be reviewed and matched against usage data. If partial permissions are adequate to keep operations running, then it’s possible to reduce the existing permissions within existing roles. 

Reducing Your Data Attack Surface by Tokenizing Your Sensitive Data

Tokenization is a great tool which can protect your data - however it’s hard to deploy and requires a lot of effort from engineers. 

Tokenization is the act of replacing sensitive data such as email addresses and credit card information with tokens, which correspond to the actual data. These tokens can reside in databases and logs throughout your cloud environment without any concern, since exposing them does not reveal the actual data but only a reference to the data.

When the data actually needs to be used (e.g. when emailing the customer or making a transaction with their credit card) the token can be used to access a vault which holds the sensitive information. This vault is highly secured using throttling limits, strong encryption, very strict access limits, and even hardware-based methods to provide adequate protection.

This method also provides a simple way to purge sensitive customer data, since the tokens that represent the sensitive data are meaningless if the data was purged from the sensitive data vault.

Reducing Your Data Attack Surface by Encrypting Your Sensitive Data

Encryption is an important technique which should almost always be used to protect sensitive data. There are two methods of encryption: using the infrastructure or platform you are using to encrypt and decrypt the data, or encrypting it on your own. In most cases, it’s more convenient to encrypt your data using the platform because it is simply a configuration change. This will allow you to ensure that only the people who need access to data will have access via encryption keys. In Amazon Web Services for example, only principals with access to the KMS vault will be able to decrypt information in an S3 bucket with KMS encryption enabled.

It is also possible to encrypt the data by using a customer-managed key, which has its advantages and disadvantages. The advantage is that it’s harder for a misconfiguration to accidentally allow access to the encryption keys, and that you don’t have to rely on the platform you are using to store them. However, using customer-managed keys means you need to send the keys over more frequently to the systems which encrypt and decrypt it, which increases the chance of the key being exposed.

Reducing Your Data Attack Surface by using Privileged Access Management Solutions

There are many tools that centrally manage access to databases. In general, they are divided into two categories: Zero-Trust Privilege Access Management solutions, and Database Governance proxies. Both provide protection against data leaks in different ways.

Zero-Trust Privilege Access Management solutions replace traditional database connectivity with stronger authentication methods combined with network access. Tools such as StrongDM and Teleport (open-source) allow developers to connect to production databases by using authentication with the corporate identity provider.

Database Governance proxies such as Satori and Immuta control how developers interact with sensitive data in production databases. These proxies control not only who can access sensitive data, but how they access the data. By proxying the requests, sensitive data can be tracked and these proxies guarantee that no sensitive information is being queried by developers. When sensitive data is queried, these proxies can either mask the sensitive information, or simply omit or disallow the requests ensuring that sensitive data doesn’t leave the database.

Reducing the data attack surface reflects the reality of the attackers mindset. They’re not trying to get into your infrastructure to breach the network. They’re doing it to find the sensitive data. By ensuring that sensitive data always is secured, tokenized, encrypted, and  with least privilege access, they’ll be nothing valuable for an attacker to find - even in the event of a breach. 

 

Discover Ron’s expertise, shaped by over 20 years of hands-on tech and leadership experience in cybersecurity, cloud, big data, and machine learning. As a serial entrepreneur and seed investor, Ron has contributed to the success of several startups, including Axonius, Firefly, Guardio, Talon Cyber Security, and Lightricks, after founding a company acquired by Oracle.

Subscribe

Latest Blog Posts

Ward Balcerzak
Ward Balcerzak
December 17, 2025
3
Min Read

How CISOs Will Evaluate DSPM in 2026: 13 New Buying Criteria for Security Leaders

How CISOs Will Evaluate DSPM in 2026: 13 New Buying Criteria for Security Leaders

Data Security Posture Management (DSPM) has quickly become part of mainstream security, gaining ground on older solutions and newer categories like XDR and SSE. Beneath the hype, most security leaders share the same frustration: too many products promise results but simply can't deliver in the messy, large-scale settings that enterprises actually have. The DSPM market is expected to jump from $1.86B in 2024 to $22.5B by 2033, giving buyers more choice - and greater pressure - to demand what really sets a solution apart for the coming years.

Instead of letting vendors dictate the RFP, what if CISOs led the process themselves? Fast-forward to 2026 and the checklist a CISO uses to evaluate DSPM solutions barely resembles the checklists of the past. Here are the 12 criteria everyone should insist on - criteria most vendors would rather you ignore, but industry leaders like Sentra are happy to highlight.

Why Legacy DSPM Evaluation Fails Modern CISOs

Traditional DSPM/DCAP evaluations were all about ticking off feature boxes: Can it scan S3 buckets? Show file types? But most CISO I meet point to poor data visibility as their biggest vulnerability. It's already obvious that today’s fragmented, agent-heavy tools aren’t cutting it.

So, what’s changed for 2026? Massive data volumes, new unstructured formats like chat logs or AI training sets, and rapid cloud adoption mean security leaders now need a different class of protection.

The right platform:

  • Works without agents, everywhere you operate
  • Focuses on bringing real, risk-based context - not just adding more alerts
  • Automates compliance and fixes identity/data governance gaps
  • Manages both structured and unstructured data across the whole organization

Old evaluation checklists don’t come close. It’s time to update yours.

The 13 DSPM Buying Criteria Vendors Hope You Don’t Ask

Here’s what should be at the heart of every modern assessment, especially for 2026:

  1. Is the platform truly agentless, everywhere? Agent-based designs slow you down and block coverage. The best solutions set up in minutes, with absolutely no agents - across SaaS, IaaS, or on-premises and will always discover any unknown and shadow data
  1. Does it operate fully in-environment? Your data needs to stay in your cloud or region - not copied elsewhere for analysis. In-environment processing guards privacy, simplifies compliance, and matches global regulations (Cloud Security Alliance).
  1. Can it accurately classify unstructured data (>98% accuracy)? Most tools stumble outside of databases. Insist on AI-powered classification that understands language, context, and sensitivity. This covers everything from PDF files to Zoom recordings to LLM training data.
  1. How does it handle petabyte-scale scanning and will it  break the bank? Legacy options get expensive as data grows. You need tools that can scan quickly and stay cost-effective across multi-cloud and hybrid environments at massive scale.
  1. Does it unify data and identity governance? Very few platforms support both human and machine identities - especially for service accounts or access across clouds. Only end-to-end coverage breaks down barriers between IT, business, and security.
  1. Can it surface business-contextualized risk insights? You need more than technical vulnerability. Leading platforms map sensitive data by its business importance and risk, making it easier to prioritize and take action.
  1. Is deployment frictionless and multi-cloud native? DSPM should work natively in AWS, Azure, GCP, and SaaS, no complicated integrations required. Insist on fast, simple onboarding.
  1. Does it offer full remediation workflow automation? It’s not enough to raise the alarm. You want exposures fixed automatically, at scale, without manual effort.

  2. Does this fit within my Data Security Ecosystem? Choose only platforms that integrate and enrich your current data governance stack so every tool operates from the same source of truth without adding operational overhead. 
  1. Are compliance and security controls bridged in a unified dashboard? No more switching between tools. Choose platforms where compliance and risk data are combined into a single view for GRC and SecOps.
  1. Does it support business-driven data discovery (e.g., by project, region, or owner)? You need dynamic views tied to business needs, helping cloud initiatives move faster without adding risk, so security can become a business enabler.
  1. What’s the track record on customer outcomes at scale? Actual results in complex, high-volume settings matter more than demo promises. Look for real stories from large organizations.
  2. How is pricing structured for future growth? Beware of pricing that seems low until your data doubles. Look for clear, usage-based models so expansion won’t bring hidden costs.

Agentless, In-Environment Power: Why It’s the New Gold Standard

Agentless, in-environment architecture removes hassles with endpoint installs, connectors, and worries about where your data goes. Gartner has highlighted that this approach reduces regulatory headaches and enables fast onboarding. As organizations keep adding new cloud and hybrid systems, only these platforms can truly scale for global teams and strict requirements.

Sentra’s platform keeps all processing inside your environment. There’s no need to export your data; offering peace of mind for privacy, sovereignty, and speed. With regulations increasing everywhere, this approach isn’t just helpful; it’s essential.

Classification Accuracy and Petabyte-Scale Efficiency: The Must-Haves for 2026

Unstructured data is growing fast, and workloads are now more diverse than ever. The difference between basic scanning and real, AI-driven classification is often the difference between protecting your company or ending up on the breach list. Leading platforms, including Sentra, deliver over 95% classification accuracy by using large language models and in-house methods across both structured and unstructured data.

Why is speed and scale so important? Old-school solutions were built with smaller data volumes in mind. Today, DSPM platforms must quickly and affordably identify and secure data in vast environments. Sentra’s scanning is both fast and affordable, keeping up as your data grows. To learn more about these challenges read: Reducing Cloud Data Attack Risk.

Don’t Settle: Redefining Best-in-Class DSPM Buying Criteria for 2026

Many vendors are still only comfortable offering the basics, but the demands facing CISOs today are anything but basic. Combining identity and data governance, multi-cloud support that works out of the box, and risk insights mapped to real business needs - these are the essential elements for protecting today’s and tomorrow’s data. If a solution doesn’t check all 12 boxes, you’re already limiting your security program before you start.

Need a side-by-side comparison for your next decision?  Request a personalized demo to see exactly how Sentra meets every requirement.

Conclusion

With AI further accelerating data growth, security teams can’t afford to settle for legacy features or generic checklists. By insisting on meaningful criteria - true agentless design, in-environment processing, precise AI-driven classification, scalable affordability, and business-first integration - CISOs set a higher standard for both their own organizations and the wider industry.

Sentra is ready to help you raise the bar. Contact us for a data risk assessment, or to discuss how to ensure your next buying decision leads to better protection, less risk, and a stronger position for the future.

Continue the Conversation

If you want to go deeper into how CISOs are rethinking data security, I explore these topics regularly on Guardians of the Data, a podcast focused on real-world data protection challenges, evolving DSPM strategies, and candid conversations with security leaders.

Watch or listen to Guardians of the Data for practical insights on securing data in an AI-driven, multi-cloud world.

<blogcta-big>

Read More
Nikki Ralston
Nikki Ralston
Romi Minin
Romi Minin
December 16, 2025
3
Min Read

Sentra Is One of the Hottest Cybersecurity Startups

Sentra Is One of the Hottest Cybersecurity Startups

We knew we were on a hot streak, and now it’s official.

Sentra has been named one of CRN’s 10 Hottest Cybersecurity Startups of 2025. This recognition is a direct reflection of our commitment to redefining data security for the cloud and AI era, and of the growing trust forward-thinking enterprises are placing in our unique approach.

This milestone is more than just an award. It shows our relentless drive to protect modern data systems and gives us a chance to thank our customers, partners, and the Sentra team whose creativity and determination keep pushing us ahead.

The Market Forces Fueling Sentra’s Momentum

Cybersecurity is undergoing major changes. With 94% of organizations worldwide now relying on cloud technologies, the rapid growth of cloud-based data and the rise of AI agents have made security both more urgent and more complicated. These shifts are creating demands for platforms that combine unified data security posture management (DSPM) with fast data detection and response (DDR).

Industry data highlights this trend: over 73% of enterprise security operations centers are now using AI for real-time threat detection, leading to a 41% drop in breach containment time. The global cybersecurity market is growing rapidly, estimated to reach $227.6 billion in 2025, fueled by the need to break down barriers between data discovery, classification, and incident response 2025 cybersecurity market insights. In 2025, organizations will spend about 10% more on cyber defenses, which will only increase the demand for new solutions.

Why Recognition by CRN Matters and What It Means

Landing a place on CRN’s 10 Hottest Cybersecurity Startups of 2025 is more than publicity for Sentra. It signals we truly meet the moment. Our rise isn’t just about new features; it’s about helping security teams tackle the growing risks posed by AI and cloud data head-on. This recognition follows our mention as a CRN 2024 Stellar Startup, a sign of steady innovation and mounting interest from analysts and enterprises alike.

Being on CRN’s list means customers, partners, and investors value Sentra’s straightforward, agentless data protection that helps organizations work faster and with more certainty.

Innovation Where It Matters: Sentra’s Edge in Data and AI Security

Sentra stands out for its practical approach to solving urgent security problems, including:

  • Agentless, multi-cloud coverage: Sentra identifies and classifies sensitive data and AI agents across cloud, SaaS, and on-premises environments without any agents or hidden gaps.
  • Integrated DSPM + DDR: We go further than monitoring posture by automatically investigating incidents and responding, so security teams can act quickly on why DSPM+DDR matters.
  • AI-driven advancements: Features like domain-specific AI Classifiers for Unstructure advanced AI classification leveraging SLMs, Data Security for AI Agents and Microsoft M365 Copilot help customers stay in control as they adopt new technologies Sentra’s AI-powered innovation.

With new attack surfaces popping up all the time, from prompt injection to autonomous agent drift, Sentra’s architecture is built to handle the world of AI.

A Platform Approach That Outpaces the Competition

There are plenty of startups aiming to tackle AI, cloud, and data security challenges. Companies like 7AI, Reco, Exaforce, and Noma Security have been in the news for their funding rounds and targeted solutions. Still, very few offer the kind of unified coverage that sets Sentra apart.

Most competitors stick to either monitoring SaaS agents or reducing SOC alerts. Sentra does more by providing both agentless multi-cloud DSPM and built-in DDR. This gives organizations visibility, context, and the power to act in one platform. With features like Data Security for AI Agents, Sentra helps enterprises go beyond managing alerts by automating meaningful steps to defend sensitive data everywhere.

Thanks to Our Community and What’s Next

This honor belongs first and foremost to our community: customers breaking new ground in data security, partners building solutions alongside us, and a team with a clear goal to lead the industry.

If you haven’t tried Sentra yet, now’s a great time to see what we can do for your cloud and AI data security program. Find out why we’re at the forefront: schedule a personalized demo or read CRN’s full 2025 list for more insight.

Conclusion

Being named one of CRN’s hottest cybersecurity startups isn’t just a milestone. It pushes us forward toward our vision - data security that truly enables innovation. The market is changing fast, but Sentra’s focus on meaningful security results hasn't wavered.

Thank you to our customers, partners, investors, and team for your ongoing trust and teamwork. As AI and cloud technology shape the future, Sentra is ready to help organizations move confidently, securely, and quickly.

Read More
Meni Besso
Meni Besso
December 15, 2025
3
Min Read

AI Governance Starts With Data Governance: Securing the Training Data and Agents Fuelling GenAI

AI Governance Starts With Data Governance: Securing the Training Data and Agents Fuelling GenAI

Generative AI isn’t just transforming products and processes - it’s expanding the entire enterprise risk surface. As C-suite executives and security leaders rush to unlock GenAI’s competitive advantages, a hard truth is clear: effective AI governance depends on solid, end-to-end data governance.

Sensitive data is increasingly used for model training and autonomous agents. If organizations fail to discover, classify, and secure these resources early, they risk privacy breaches, regulatory violations, and reputational damage. To make GenAI safe, compliant, and trustworthy from the start, data governance for generative AI needs to be a top boardroom priority.

Why Data Governance is the Cornerstone of GenAI Trustworthiness and Safety

The opportunities and risks of generative AI depend not only on algorithms, but also on the quality, security, and history of the underlying data. AWS reports that 39% of Chief Data Officers see data cleaning, integration, and storage as the main barriers to GenAI adoption, and 49% of enterprises make data quality improvement a core focus for successful AI projects (AWS Enterprise Strategy - Data Governance). Without strong data governance, sensitive information can end up in training sets, leading to unintentional leaks or model behaviors that break privacy and compliance.

Regulatory requirements, such as the Generative AI Copyright Disclosure Act, are evolving fast, raising the pressure to document data lineage and make sure unauthorized or non-compliant datasets stay out. In the world of GenAI, governance goes far beyond compliance checklists. It’s essential for building AI that is safe, auditable, and trusted by both regulators and customers.

New Attack Surfaces: Risks From Unsecured Data and Shadow AI Agents

GenAI adoption increases risk. Today, 79% of organizations have already piloted or deployed agentic AI, with many using LLM-powered agents to automate key workflows (Wikipedia - Agentic AI). But if these agents, sometimes functioning as "shadow AI" outside official oversight, access sensitive or unclassified data, the fallout can be severe.

In 2024, over 30% of AI data breaches involve insider threats or accidental disclosure, according to Quinnox Data Governance for AI. Autonomous agents can mistakenly reveal trade secrets, financial records, or customer data, damaging brand trust. The risk multiplies rapidly if sensitive data isn’t properly governed before flowing into GenAI tools. To stop these new threats, organizations need up-to-the-minute insight and control over both data and the agents using it.

Frameworks and Best Practices for Data Governance in GenAI

Leading organizations now follow data governance frameworks that match changing regulations and GenAI's technical complexity. Standards like NIST AI Risk Management Framework (AI RMF) and ISO/IEC 42001:2023 are setting the benchmarks for building auditable, resilient AI programs (Data and AI Governance - Frameworks & Best Practices).

Some of the most effective practices:

  • Managing metadata and tracking full data lineage
  • Using data access policies based on role and context
  • Automating compliance with new AI laws
  • Monitoring data integrity and checking for bias

A strong data governance program for generative AI focuses on ongoing data discovery, classification, and policy enforcement - before data or agents meet any AI models. This approach helps lower risk and gives GenAI efforts a solid base of trust.

Sentra’s Approach: Proactive Pre-Integration Discovery and Continuous Enforcement

Many tools only secure data after it’s already being used with GenAI applications. This reactive strategy leaves openings for risk. Sentra takes a different path, letting organizations discover, classify, and protect sensitive data sources before they interact with language models or agentic AI.

By using agentless, API-based discovery and classification across multi-cloud and SaaS environments, Sentra delivers immediate visibility and context-aware risk scoring for all enterprise data assets. With automated policies, businesses can mask, encrypt, or restrict data access depending on sensitivity, business requirements, or audit needs. Live Continuous monitoring tracks which AI agents are accessing data, making granular controls and fast intervention possible. These processes help stop shadow AI, keep unauthorized data out of LLM training, and maintain compliance as rules and business needs shift.

Guardrails for Responsible AI Growth Across the Enterprise

The future of GenAI depends on how well businesses can innovate while keeping security and compliance intact. As AI regulations become stricter and adoption speeds up, Sentra’s ability to provide ongoing, automated discovery and enforcement at scale is critical. Further reading: AI Automation & Data Security: What You Need To Know.

With Sentra, organizations can:

  • Stop unapproved or unchecked data from being used in model training
  • Identify shadow AI agents or risky automated actions as they happen
  • Support audits with complete data classification
  • Meet NIST, ISO, and new global standards with ease

Sentra gives CISOs, CDOs, and executives a proactive, scalable way to adopt GenAI safely, protecting the business before any model training even begins.

AI Governance Starts with Data Governance

AI governance for generative AI starts, and is won or lost, at the data layer. If organizations don’t find, classify, and secure sensitive data first, every other security measure remains reactive and ineffective. As generative AI, agent automation, and regulatory demands rise, a unified data governance strategy isn’t just good practice, it’s an urgent priority. Sentra gives security and business teams real control, making sure GenAI is secure, compliant, and trusted.

<blogcta-big>

Read More
decorative ball
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security. Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!

Before you go...

Get the Gartner Customers' Choice for DSPM Report

Read why 98% of users recommend Sentra.

Gartner Certificate for Sentra