All Resources
In this article:
minus iconplus icon
Share the Blog

Automating Sensitive Data Classification in Audio, Image and Video Files

January 13, 2025
4
 Min Read
Data Security

The world we live in is constantly changing. Innovation and technology are advancing at an unprecedented pace. So much innovation and high tech. Yet, in the midst of all this progress, vast amounts of critical data continue to be stored in various formats, often scattered across network file shares network file shares or cloud storage. Not just structured documents—PDFs, text files, or PowerPoint presentations - we're talking about audio recordings, video files, x-ray images, engineering charts, and so much more.

How do you truly understand the content hidden within these formats? 

After all, many of these files could contain your organization’s crown jewels—sensitive data, intellectual property, and proprietary information—that must be carefully protected.

Importance of Extracting and Understanding Unstructured Data

Extracting and analyzing data from audio, image and video files is crucial in a data-driven world. Media files often contain valuable and sensitive information that, when processed effectively, can be leveraged for various applications.

  • Accessibility: Transcribing audio into text helps make content accessible to people with hearing impairments and improves usability across different languages and regions, ensuring compliance with accessibility regulations.
  • Searchability: Text extraction enables indexing of media content, making it easier to search and categorize based on keywords or topics. This becomes critical when managing sensitive data, ensuring that privacy and security standards are maintained while improving data discoverability.
  • Insights and Analytics: Understanding the content of audio, video, or images can help derive actionable insights for fields like marketing, security, and education. This includes identifying sensitive data that may require protection, ensuring compliance with privacy regulations, and protecting against unauthorized access.
  • Automation: Automated analysis of multimedia content supports workflows like content moderation, fraud detection, and automated video tagging. This helps prevent exposure of sensitive data and strengthens security measures by identifying potential risks or breaches in real-time.
  • Compliance and Legal Reasons: Accurate transcription and content analysis are essential for meeting regulatory requirements and conducting audits, particularly when dealing with sensitive or personally identifiable information (PII). Proper extraction and understanding of media data help ensure that organizations comply with privacy laws such as GDPR or HIPAA, safeguarding against data breaches and potential legal issues.

Effective extraction and analysis of media files unlocks valuable insights while also playing a critical role in maintaining robust data security and ensuring compliance with evolving regulations.

Cases Where Sensitive Data Can Be Found in Audio & MP4 Files

In industries such as retail and consumer services, call centers frequently record customer calls for quality assurance purposes. These recordings often contain sensitive information like personally identifiable information (PII) and payment card data (PCI), which need to be safeguarded. In the media sector, intellectual property often consists of unpublished or licensed videos, such as films and TV shows, which are copyrighted and require protection with rights management technology. However, it's common for employees or apps to extract snippets or screenshots from these videos and store them on personal drives or in unsecured environments, exposing valuable content to unauthorized access.

Another example is when intellectual property or trade secrets are inadvertently shared through unsecured audio or video files, putting sensitive business information at risk - or simply a leakage of confidential information such as non-public sales figures for a publicly traded company. Serious damage can occur to a public company if a bad actor got a hold of an internal audio or video call recording in advance where forecasts or other non-public sales figures are discussed. This would likely be a material disclosure requiring regulatory reporting (ie., for SEC 4-day material breach compliance).

Discover Sensitive Data in MP4s and Audio with Sentra

AI-powered technologies that extract text from images, audio, and video are built on advanced machine learning models like Optical Character Recognition (OCR) and Automatic Speech Recognition (ASR)

OCR converts visual text in images or videos into editable, searchable formats, while ASR transcribes spoken language from audio and video into text. These systems are fueled by deep learning algorithms trained on vast datasets, enabling them to recognize diverse fonts, handwriting, languages, accents, and even complex layouts. At scale, cloud computing enables the deployment of these AI models by leveraging powerful GPUs and scalable infrastructure to handle high volumes of data efficiently. 

The Sentra Cloud-Native Platform integrates tools like serverless computing, distributed processing, and API-driven architectures, allowing it to access these advanced capabilities that run ML models on-demand. This seamless scaling capability ensures fast, accurate text extraction across the global user base.

Sentra is rapidly adopting advancements in AI-driven text extraction. A few examples of recent advancements are Optical Character Recognition (OCR) that works seamlessly on dynamic video streams and robust Automatic Speech Recognition (ASR) models capable of transcribing multilingual and domain-specific content with high accuracy. Additionally, innovations in pre-trained transformer models, like Vision-Language and Speech-Language models, enable context-aware extractions, such as identifying key information from complex layouts or detecting sentiment in spoken text. These breakthroughs are pushing the boundaries of accessibility and automation across industries, and enable data security and privacy teams to achieve what was previously thought impossible.

Large volume of sensitive data was copied into a shared drive
Data at Risk - Data Activity Overview

Sentra: An Innovator in Sensitive Data Discovery within Video & Audio

Sentra’s innovative approach to sensitive data discovery goes beyond traditional text-based formats, leveraging advanced ML and AI algorithms to extract and classify data from audio, video, and images. Extracting and understanding unstructured data from media files is increasingly critical in today’s data-driven world. These files often contain valuable and sensitive information that, when properly processed, can unlock powerful insights and drive better decision-making across industries. Sentra’s solution contextualizes multimedia content to highlight what matters most for your unique needs, delivering instant answers with a single click—capabilities we believe set us apart as the only DSPM solution offering this level of functionality.

As threats continue to evolve across multiple vectors, including text, audio, and video—solution providers must constantly adopt new techniques for accurate classification and detection. AI plays a critical role in enhancing these capabilities, offering powerful tools to improve precision and scalability. Sentra is committed to driving innovation by leveraging these advanced technologies to keep data secure.

Want to see it in action? Request a demo today and discover how Sentra can help you protect sensitive data wherever it resides, even in image and audio formats.

Yair brings a wealth of experience in cybersecurity and data product management. In his previous role, Yair led product management at Microsoft and Datadog. With a background as a member of the IDF's Unit 8200 for five years, he possesses over 18 years of expertise in enterprise software, security, data, and cloud computing. Yair has held senior product management positions at Datadog, Digital Asset, and Microsoft Azure Protection.

Subscribe

Latest Blog Posts

Yoav Regev
Yoav Regev
April 23, 2025
3
Min Read
Data Security

Your AI Is Only as Secure as Your Data: Celebrating a $100M Milestone

Your AI Is Only as Secure as Your Data: Celebrating a $100M Milestone

Over the past year, we’ve seen an incredible surge in enterprise AI adoption. Companies across industries are integrating AI agents and generative AI into their operations to move faster, work smarter, and unlock innovation. But behind every AI breakthrough lies a foundational truth: AI is only as secure as the data behind it.

At Sentra, securing that data has always been our mission, not just to prevent breaches and data leaks, but to empower prosperity and innovation with confidence and control.

Data Security: The Heartbeat of Your Organization

As organizations push forward with AI, massive volumes of data, often sensitive, regulated, or business-critical are being used to train models or power AI agents. Too often, this happens without full visibility or governance. 


The explosion of the data security market reflects how critical this challenge has become. At Sentra, we’ve long believed that a Data Security Platform (DSP) must be cloud-native, scalable, and adaptable to real-world enterprise environments. We’ve been proud to lead the way, and our continued growth, especially among Fortune 500 customers, is a testament to the urgency and relevance of our approach.

Scaling for What's Next

With the announcement of our $50 million Series B funding round, bringing our total funding to over $100 million, we’re scaling Sentra to meet the moment. We're counting on strong customer momentum and more than tripling revenue year-over-year, and we’re using this investment to grow our team, strengthen our platform, and continue defining what modern data security looks like.

We’ve always said security shouldn’t slow innovation - it should fuel it. And that’s exactly what we’re enabling.

It's All About the People


At the end of the day, it’s people who build it, scale it, and believe in it. I want to extend a heartfelt thank you to our investors, customers, and, most importantly, our team. It’s all about you! Your belief in Sentra and your relentless execution make everything possible. We couldn’t make it without each and every one of you.

We’re not just building a product, we’re setting the gold standard for data security, because securing your data is the heartbeat of your organization!

Innovation without security isn’t progress. Let’s shape a future where both go together!

Read More
Meni Besso
Meni Besso
April 21, 2025
Min Read
Compliance

How to Scale DSAR Compliance (Without Breaking Your Team)

How to Scale DSAR Compliance (Without Breaking Your Team)

Privacy regulations such as GDPR (EU), CCPA/CPRA (California), and others are not just about legal checkboxes, they’re about building trust. In today’s data-driven world, customers expect organizations to be transparent about how their personal information is collected, used, and protected. When companies take privacy seriously, they demonstrate respect for their users, which in turn fosters loyalty and long-term engagement.

But among the many privacy requirements, Data Subject Access Requests (DSARs) can be the most complex to support. DSARs give individuals the right to request access to the personal data that an organization holds about them—often with a firm deadline of just 30 days to respond. For large enterprises with data scattered across multiple systems, both in the cloud and on-premises, even a single request can trigger a chaotic search across different platforms, manual reviews and legal oversight—it quickly becomes a race against the clock, with compliance, trust, and reputation on the line.

Key Challenges in Responding to DSARs

Data Discovery & Inventory
For large organizations, pinpointing where personal data resides across a diverse ecosystem of information systems, including databases, SaaS applications, data lakes, and legacy environments, is a complex challenge. The presence of fragmented IT infrastructure and third-party platforms often leads to limited visibility, which not only slows down the DSAR response process but also increases the likelihood of missing or overlooking critical personal data.

Linking Identities Across Systems
A single individual may appear in multiple systems under different identifiers, especially if systems have been acquired or integrated over time. Accurately correlating these identities to compile a complete DSAR response requires sophisticated identity resolution and often manual effort.


Unstructured Data Handling
Unlike structured databases, where data is organized into labeled fields and can be efficiently queried, unstructured data (like PDFs, documents, and logs) is free-form and lacks consistent formatting. This makes it much harder to search, classify, or extract relevant personal information.

Response Timeliness
Regulatory deadlines force organizations to respond quickly, even when data must be gathered from multiple sources and reviewed by legal teams. Manual processes can lead to delays, risking non-compliance and fines.

Volume & Scalability
While most organizations can handle an occasional DSAR manually, spikes in request volume — driven by events like regulatory campaigns or publicized incidents — can overwhelm privacy and legal teams. Without scalable automation, organizations face mounting operational costs, missed deadlines, and an increased risk of inconsistent or incomplete responses.


The Role of Data Security Platforms in DSAR Automation

Sentra is a modern data security platform dedicated to helping organizations gain complete visibility and control over their sensitive data. By continuously scanning and classifying data across all environments (including cloud, SaaS, and on-premises systems) Sentra maintains an always up-to-date data map, giving organizations a clear understanding of where sensitive data resides, how it flows, and who has access to it. This data map forms the foundation for efficient DSAR automation, enabling Sentra’s DSAR module to search for user identifiers only in locations where relevant data actually exists - ensuring high accuracy, completeness, and fast response times.

Data Security Platform example of US SSN finding

Another key factor in managing DSAR requests is ensuring that sensitive customer PII doesn’t end up in unauthorized or unintended environments. When data is copied between systems or environments, it’s essential to apply tokenization or masking to prevent unintentional sprawl of PII. Sentra helps identify misplaced or duplicated sensitive data and alerts when it isn’t properly protected. This allows organizations to focus DSAR processing within authorized operational environments, significantly reducing both risk and response time.

Smart Search of Individual Data

To initiate the generation of a Data Subject Access Request (DSAR) report, users can submit one or more unique identifiers—such as email addresses, Social Security numbers, usernames, or other personal identifiers—corresponding to the individual in question. Sentra then performs a targeted scan across the organization’s data ecosystem, focusing on data stores known to contain personally identifiable information (PII). This includes production databases, data lakes, cloud storage services, file servers, and both structured and unstructured data sources.

Leveraging its advanced classification and correlation capabilities, Sentra identifies all relevant records associated with the provided identifiers. Once the scan is complete, it compiles a comprehensive DSAR report that consolidates all discovered personal data linked to the data subject that can be downloaded as a PDF for manual review or securely retrieved via Sentra’s API.

DSAR Requests

Establishing a DSAR Processing Pipeline

Large organizations that receive a high volume of DSAR (Data Subject Access Request) submissions typically implement a robust, end-to-end DSAR processing pipeline. This pipeline is often initiated through a self-service privacy portal, allowing individuals to easily submit requests for access or deletion of their personal data. Once a request is received, an automated or semi-automated workflow is triggered to handle the request efficiently and in compliance with regulatory timelines.

  1. Requester Identity Verification: Confirm the identity of the data subject to prevent unauthorized access (e.g., via email confirmation or secure login).

  2. Mapping Identifiers: Collect and map all known identifiers for the individual across systems (e.g., email, user ID, customer number).

  3. Environment-Wide Data Discovery (via Sentra): Use Sentra to search all relevant environments — cloud, SaaS, on-prem — for personal data tied to the individual. By using Sentra’s automated discovery and classification, Sentra can automatically identify where to search for.

  4. DSAR Report Generation (via Sentra): Compile a detailed report listing all personal data found and where it resides.

  5. Data Deletion & Verification: Remove or anonymize personal data as required, then rerun a search to verify deletion is complete.

  6. Final Response to Requester: Send a confirmation to the requester, outlining the actions taken and closing the request.

Sentra plays a key role in the DSAR pipeline by exposing a powerful API that enables automated, organization-wide searches for personal data. The search results can be programmatically used to trigger downstream actions like data deletion. After removal, the API can initiate a follow-up scan to verify that all data has been successfully deleted.

Benefits of DSAR Automation 

With privacy regulations constantly growing, and DSAR volumes continuing to rise, building an automated, scalable pipeline is no longer a luxury - it’s a necessity.


  • Automated and Cost-Efficient: Replaces costly, error-prone manual processes with a streamlined, automated approach.
  • High-Speed, High-Accuracy: Sentra leverages its knowledge of where PII resides to perform targeted searches across all environments and data types, delivering comprehensive reports in hours—not days.
  • Seamless Integration: A powerful API allows integration with workflow systems, enabling a fully automated, end-to-end DSAR experience for end users.

By using Sentra to intelligently locate PII across all environments, organizations can eliminate manual bottlenecks and accelerate response times. Sentra’s powerful API and deep data awareness make it possible to automate every step of the DSAR journey - from discovery to deletion - enabling privacy teams to operate at scale, reduce costs, and maintain compliance with confidence. 

Turning DSAR Compliance into a Scalable Advantage

As privacy expectations grow and regulatory pressure intensifies, DSARs are no longer just a checkbox. They are a reflection of how seriously an organization takes user trust. Manual, reactive processes simply can’t keep up with the scale and complexity of modern data environments.

By automating DSAR workflows with tools like Sentra, organizations can achieve faster response times, lower operational costs, and sustained compliance - while freeing up teams to focus on higher-value privacy initiatives.

Read More
David Stuart
David Stuart
April 3, 2025
3
Min Read
Data Security

The Rise of Next-Generation DSPs

The Rise of Next-Generation DSPs

Recently there has been a significant shift from standalone Data Security Posture Management (DSPM) solutions to comprehensive Data Security Platforms (DSPs). These platforms integrate DSPM functionality, but also encompass access governance, threat detection, and data loss prevention capabilities to provide a more holistic data protection solution. Additionally, the critical role of data in AI and LLM training requires holistic data security platforms that can manage data sensitivity, ensure security and compliance, and maintain data integrity.

This consolidation will improve security effectiveness and help organizations manage the growing complexity of their IT environments. Originally more of a governance/compliance tool, DSPs have evolved into a critical necessity for organizations managing sensitive data in sprawling cloud environments. With the explosion of cloud adoption, stricter regulatory landscapes, and the increasing sophistication of cyber threats, DSPs will continue to evolve to address the monumental data scale expected.

DSP Addressing Modern Challenges in 2025

As the threat landscape evolves, DSP is shifting to address modern challenges. New trends such as AI integration, real-time threat detection, and cloud-native architectures are transforming how organizations approach data security. DSPM is no longer just about assuring compliance and proper data governance, it’s about mitigating all data risks, monitoring for new threats, and proactively resolving them in real time.

Must-Have DSP Features for 2025

Over the years, Data Security Platforms (DSPs) have evolved significantly, with a range of providers emerging to address the growing need for robust data security in cloud environments. Initially, smaller startups began offering innovative solutions, and in 2024, several of these providers were acquired, signaling the increasing demand for comprehensive data protection. As organizations continue to prioritize securing their cloud data, it's essential to carefully evaluate DSP solutions to ensure they meet key security needs. When assessing DSP options for 2025, certain features stand out as critical for ensuring a comprehensive and effective approach to data security.

Below are outlined the must-have features for any DSP solution in the coming year:

  1. Cloud-Native Architecture

Modern DSPs are built for the cloud and address vast data scale with cloud-native technologies that leverage provider APIs and functions. This allows data discovery and classification to occur autonomously, within the customer cloud environment leveraging existing compute resources. Agentless approaches reduce administrative burdens as well.

  1. AI-Based Classification

AI has revolutionized data classification, providing context-aware accuracy exceeding 95%. By understanding data in its unique context, AI-driven DSP solutions ensure the right security measures are applied without overburdening teams with false positives.

  1. Anomaly Detection and Real-Time Threat Detection

Anomaly detection, powered by Data Detection and Response (DDR), identifies unusual patterns in data usage to spotlight risks such as ransomware and insider threats. Combined with real-time, data-aware detection of suspicious activities, modern DSP solutions proactively address cloud-native vulnerabilities, stopping breaches before they unfold and ensuring swift, effective action.

  1. Automatic Labeling

Manual tagging is too cumbersome and time consuming. When choosing DSP solutions, it’s critical to make sure that you choose ones that automate data tagging and labeling, seamlessly integrating with Data Loss Prevention (DLP), Secure Access Service Edge (SASE), and governance platforms. This reduces errors and accelerates compliance processes.

  1. Data Zones and Perimeters

As data moves across cloud environments, maintaining control is paramount. Leading DSP solutions monitor data movement, alerting teams when data crosses predefined perimeters or storage zones, ensuring compliance with internal and external policies.

  1. Automatic Remediation and Enforcement

Automation extends to remediation, with DSPs swiftly addressing data risks like excessive permissions or misconfigurations. By enforcing protection policies across cloud environments, organizations can prevent breaches before they occur.

The Business Case for DSP in 2025

Proactive Security

Cloud-native DSP represents a shift from reactive to proactive security practices. By identifying and addressing risks early, and across their entire data estate from cloud to on-premises, organizations can mitigate potential threats and strengthen their security posture.

Regulatory Compliance

As regulations such as GDPR and CCPA continue to evolve, DSPM solutions play a crucial role in simplifying compliance by automating data discovery and labeling. This automation reduces the manual effort required to meet regulatory requirements. In fact, 84% of security and IT professionals consider data protection frameworks like GDPR and CCPA to be mandatory for their industries, emphasizing the growing need for automated solutions to ensure compliance.

The Rise of Gen AI

The rise of Gen AI is expected to be a main theme in 2025. Gen AI is a driver for data proliferation in the cloud and for a transition between legacy data technologies and modern ones that require an updated data security program.

Operational Efficiency

By automating repetitive tasks, DSPM significantly reduces the workload for security teams. This efficiency allows teams to focus on strategic initiatives rather than firefighting. According to a 2024 survey, organizations using DSPM reported a 40% reduction in time spent on manual data management tasks, demonstrating its impact on operational productivity.

Future-Proofing Your Organization with Cloud-Native DSP

To thrive in the evolving security landscape, organizations must adopt forward-looking strategies. Cloud-native DSP tools integrate seamlessly with broader security frameworks, ensuring resilience and adaptability. As technology advances, features like predictive analytics and deeper AI integration will further enhance capabilities.

Conclusion

Data security challenges are only becoming more complex, but new Data Security Platforms (DSPs) provide the tools to meet them head-on. Now is the time for organizations to take a hard look at their security posture and consider how DSPs can help them stay protected, compliant, and trusted. DSPs are quickly becoming essential to business operations, influencing strategic decisions and enabling faster, more secure innovation.

Ready to see it in action?

Request a demo to discover how a modern DSP can strengthen your security and support your goals.

Read More
decorative ball