All Resources
In this article:
minus iconplus icon
Share the Article

What is Sensitive Data Exposure and How to Prevent It

January 1, 2024
6
 Min Read
Data Security

What is Sensitive Data Exposure?

Sensitive data exposure occurs when security measures fail to protect sensitive information from external and internal threats. This leads to unauthorized disclosure of private and confidential data. Attackers often target personal data, such as financial information and healthcare records, as it is valuable and exploitable.

Security teams play a critical role in mitigating sensitive data exposures. They do this by implementing robust security measures. This includes eliminating malicious software, enforcing strong encryption standards, and enhancing access controls. Yet, even with the most sophisticated security measures in place, data breaches can still occur. They often happen through the weakest links in the system.

Organizations must focus on proactive measures to prevent data exposures. They should also put in place responsive strategies to effectively address breaches. By combining proactive and responsive measures, as stated below, organizations can protect sensitive data exposure. They can also maintain the trust of their customers.

Proactive Measures Responsive Strategies
Implementation of appropriate security posture controls for sensitive data, such as encryption, data masking, de-identification, etc. Security audits with patch management ensure the masking of affected data to minimize the attack surface and eradicate threats.
Sensitive data access restrictions through least privilege principles enforcement. Promptly identifying and reacting through incident response systems with adequate alerting.
Enablement of comprehensive logging mechanisms to capture and monitor activities on sensitive data. Investigating the root cause of the breach to prevent similar incidents from occurring in the future.
Alignment with cyber protection regulations and compliance requirements through adherence to strict cyber policies. Implementing additional custom security measures to strengthen the overall security posture.

Difference Between Data Exposure and Data Breach

Both data exposure and data breaches involve unauthorized access or disclosure of sensitive information. However, they differ in their intent and the underlying circumstances.

Data Exposure

Data exposure occurs when sensitive information is inadvertently disclosed or made accessible to unauthorized individuals or entities. This exposure can happen due to various factors. These include misconfigured systems, human error, or inadequate security measures. Data exposure is typically unintentional. The exposed data may not be actively targeted or exploited.

Data Breach

A data breach, on the other hand, is a deliberate act of unauthorized access to sensitive information with the intent to steal, manipulate, or exploit it. Data breaches are often carried out by cybercriminals or malicious actors seeking financial gain, identity theft, or to disrupt an organization's operations.

Key Differences

The table below summarizes the key differences between sensitive data exposure and data breaches:

Features Data Exposure Data Breach
Intent Unintentional Intentional
Underlying Factor Human error, misconfigured systems, inadequate security Deliberate attacks by cybercriminals or malicious actors
Impact Can still lead to privacy violations and reputational damage Often more severe impacts, including fraud and financial losses, identity theft, and disruption of operations
Solutions Following security best practices, continuous monitoring and SecOps literacy Robust security measures with discrete monitoring and alerting for anomaly detection and remediation

Types of Sensitive Data Exposure

Attackers relentlessly pursue sensitive data. They create increasingly sophisticated and inventive methods to breach security systems and compromise valuable information. Their motives range from financial gain to disruption of operations. Ultimately, this causes harm to individuals and organizations alike. There are three main types of data breaches that can compromise sensitive information:

Availability Breach

An availability breach occurs when authorized users are temporarily or permanently denied access to sensitive data. Ransomware commonly uses this method to extort organizations. Such disruptions can impede business operations and hinder essential services. They can also result in financial losses. Addressing and mitigating these breaches is essential to ensure uninterrupted access and business continuity.

Confidentiality Breach

A confidentiality breach occurs when unauthorized entities access sensitive data, infringing upon its privacy and confidentiality. The consequences can be severe. They can include financial fraud, identity theft, reputational harm, and legal repercussions. It's crucial to maintain strong security measures. Doing so prevents breaches and preserves sensitive information's integrity.

Integrity Breach

An integrity breach occurs when unauthorized individuals or entities alter or modify sensitive data. AI LLM training is particularly vulnerable to this breach form. This compromises the data's accuracy and reliability. This manipulation of data can result in misinformation, financial losses, and diminished trust in data quality. Vigilant measures are essential to protect data integrity. They also help reduce the impact of breaches.

How Sensitive Data Gets Exposed

Sensitive data, including vital information like Personally Identifiable Information (PII), financial records, and healthcare data, forms the backbone of contemporary organizations. Unfortunately, weak encryption, unreliable application programming interfaces, and insufficient security practices from development and security teams can jeopardize this invaluable data. Such lapses lead to critical vulnerabilities, exposing sensitive data at three crucial points:

Data in Transit

Data in transit refers to the transfer of data between locations, such as from a user's device to a server or between servers. This data is a prime target for attackers due to its often unencrypted state, making it vulnerable to interception. Key factors contributing to data exposure in transit include weak encryption, insecure protocols, and the risk of man-in-the-middle attacks. It is crucial to address these vulnerabilities to enhance the security of data during transit.

Data at Rest

While data at rest is less susceptible to interception than data in transit, it remains vulnerable to attacks. Enterprises commonly face internal exposure to sensitive data when they have misconfigurations or insufficient access controls on data at rest. Oversharing and insufficient access restrictions heighten the risk in data lakes and warehouses that house Personally Identifiable Information (PII). To mitigate this risk, it is important to implement robust access controls and monitoring measures. This ensures restricted access and vigilant tracking of data access patterns.

Data in Use

Data in use is the most vulnerable to attack, as it is often unencrypted and can be accessed by multiple users and applications. When working in cloud computing environments, dev teams usually gather the data and cache it within the mounts or in-memory to boost performance and reduce I/O. Such data causes sensitive data exposure vulnerabilities as other teams or cloud providers can access the data. The security teams need to adopt standard data handling practices. For example, they should clean the data from third-party or cloud mounts after use and disable caching.

What Causes Sensitive Data Exposure?

Sensitive data exposure results from a combination of internal and external factors. Internally, DevSecOps and Business Analytics teams play a significant role in unintentional data exposures. External threats usually come from hackers and malicious actors. Mitigating these risks requires a comprehensive approach to safeguarding data integrity and maintaining a resilient security posture.

Internal Causes of Sensitive Data Exposure

  • No or Weak Encryption: Encryption and decryption algorithms are the keys to safeguarding data. Sensitive data exposures occur due to weak cryptography protocols. They also occur due to a lack of encryption or hashing mechanisms.
  • Insecure Passwords: Insecure password practices and insufficient validation checks compromise enterprise security, facilitating data exposure.
  • Unsecured Web Pages: JSON payloads get delivered from web servers to frontend API handlers. Attackers can easily exploit the data transaction between the server and client when users browse unsecure web pages with weak SSL and TLS certificates.
  • Poor Access Controls and Misconfigurations: Insufficient multi-factor authentication (MFA) or excessive permissioning and unreliable security posture management contribute to sensitive data exposure through misconfigurations.
  • Insider Threat Attacks: Current or former employees may unintentionally or intentionally target data, posing risks to organizational security and integrity.

External Causes of Sensitive Data Exposure

  • SQL Injection: SQL Injection happens when attackers introduce malicious queries and SQL blocks into server requests. This lets them tamper with backend queries to retrieve or alter data, causing SQL injection attacks.
  • Network Compromise: A network compromise occurs when unauthorized users gain control of backend services or servers. This compromises network integrity, risking resource theft or data alteration.
  • Phishing Attacks: Phishing attacks contain malicious links. They exploit urgency, tricking recipients into disclosing sensitive information like login credentials or personal details.
  • Supply Chain Attacks: When compromised, Third-party service providers or vendors exploit the dependent systems and unintentionally expose sensitive data publicly.

Impact of Sensitive Data Exposure

Exposing sensitive data poses significant risks. It encompasses private details like health records, user credentials, and biometric data. Accountability, governed by acts like the Accountability Act, mandates organizations to safeguard granular user information. Failure to prevent unauthorized exposure can result in severe consequences. This can include identity theft and compromised user privacy. It can also lead to regulatory and legal repercussions and potential corruption of databases and infrastructure. Organizations must focus on stringent measures to mitigate these risks.

Data table on the impact of sensitive data exposure and its severity.

Examples of Sensitive Data Exposure

Prominent companies, including Atlassian, LinkedIn, and Dubsmash, have unfortunately become notable examples of sensitive data exposure incidents. Analyzing these cases provides insights into the causes and repercussions of such data exposure. It offers valuable lessons for enhancing data security measures.

Atlassian Jira (2019)

In 2019, Atlassian Jira, a project management tool, experienced significant data exposure. The exposure resulted from a configuration error. A misconfiguration in global permission settings allowed unauthorized access to sensitive information. This included names, email addresses, project details, and assignee data. The issue originated from incorrect permissions granted during the setup of filters and dashboards in JIRA.

LinkedIn (2021)

LinkedIn, a widely used professional social media platform, experienced a data breach where approximately 92% of user data was extracted through web scraping. The security incident was attributed to insufficient webpage protection and the absence of effective mechanisms to prevent web crawling activity.

Equifax (2017)

In 2017, Equifax Ltd., the UK affiliate of credit reporting company Equifax Inc., faced a significant data breach. Hackers infiltrated Equifax servers in the US, impacting over 147 million individuals, including 13.8 million UK users. Equifax failed to meet security obligations. It outsourced security management to its US parent company. This led to the exposure of sensitive data such as names, addresses, phone numbers, dates of birth, Equifax membership login credentials, and partial credit card information.

Cost of Compliance Fines

Data exposure poses significant risks, whether at rest or in transit. Attackers target various dimensions of sensitive information. This includes protected health data, biometrics for AI systems, and personally identifiable information (PII). Compliance costs are subject to multiple factors influenced by shifting regulatory landscapes. This is true regardless of the stage.

Enterprises failing to safeguard data face substantial monetary fines or imprisonment. The penalty depends on the impact of the exposure. Fines can range from millions to billions, and compliance costs involve valuable resources and time. Thus, safeguarding sensitive data is imperative for mitigating reputation loss and upholding industry standards.

How to Determine if You Are Vulnerable to Sensitive Data Exposure?

Detecting security vulnerabilities in the vast array of threats to sensitive data is a challenging task. Unauthorized access often occurs due to lax data classification and insufficient access controls. Enterprises must adopt additional measures to assess their vulnerability to data exposure.

Deep scans, validating access levels, and implementing robust monitoring are crucial steps. Detecting unusual access patterns is crucial. In addition, using advanced reporting systems to swiftly detect anomalies and take preventive measures in case of a breach is an effective strategy. It proactively safeguards sensitive data.

Automation is key as well - to allow burdened security teams the ability to keep pace with dynamic cloud use and data proliferation. Automating discovery and classification, freeing up resources, and doing so in a highly autonomous manner without requiring huge setup and configuration efforts can greatly help.

How to Prevent Sensitive Data Exposure

Effectively managing sensitive data demands rigorous preventive measures to avert exposure. Widely embraced as best practices, these measures serve as a strategic shield against breaches. The following points focus on specific areas of vulnerability. They offer practical solutions to either eliminate potential sensitive data exposures or promptly respond to them:

Assess Risks Associated with Data

The initial stages of data and access onboarding serve as gateways to potential exposure. Conducting a thorough assessment, continual change monitoring, and implementing stringent access controls for critical assets significantly reduces the risks of sensitive data exposure. This proactive approach marks the first step to achieving a strong data security posture.

Minimize Data Surface Area

Overprovisioning and excessive sharing create complexities. This turns issue isolation, monitoring, and maintenance into challenges. Without strong security controls, every part of the environment, platform, resources, and data transactions poses security risks. Opting for a less-is-more approach is ideal. This is particularly true when dealing with sensitive information like protected health data and user credentials. By minimizing your data attack surface, you mitigate the risk of cloud data leaks.

Store Passwords Using Salted Hashing Functions and Leverage MFA

Securing databases, portals, and services hinges on safeguarding passwords. This prevents unauthorized access to sensitive data. It is crucial to handle password protection and storage with precision. Use advanced hashing algorithms for encryption and decryption. Adding an extra layer of security through multi-factor authentication strengthens the defense against potential breaches even more.

Disable Autocomplete and Caching

Cached data poses significant vulnerabilities and risks of data breaches. Enterprises often use auto-complete features, requiring the storage of data on local devices for convenient access. Common instances include passwords stored in browser sessions and cache. In cloud environments, attackers exploit computing instances. They access sensitive cloud data by exploiting instances where data caching occurs. Mitigating these risks involves disabling caching and auto-complete features in applications. This effectively prevents potential security threats.

Fast and Effective Breach Response

Instances of personal data exposure stemming from threats like man-in-the-middle and SQL injection attacks necessitate swift and decisive action. External data exposure carries a heightened impact compared to internal incidents. Combatting data breaches demands a responsive approach. It's often facilitated by widely adopted strategies. These include Data Detection and Response (DDR), Security Orchestration, Automation, and Response (SOAR), User and Entity Behavior Analytics (UEBA), and the renowned Zero Trust Architecture featuring Predictive Analytics (ZTPA).

Tools to Prevent Sensitive Data Exposure

Shielding sensitive information demands a dual approach—internally and externally. Unauthorized access can be prevented through vigilant monitoring, diligent analysis, and swift notifications to both security teams and affected users. Effective tools, whether in-house or third-party, are indispensable in preventing data exposure.

Data Security Posture Management (DSPM) is designed to meet the changing requirements of security, ensuring a thorough and meticulous approach to protecting sensitive data. Tools compliant with DSPM standards usually feature data tokenization and masking, seamlessly integrated into their services. This ensures that data transmission and sharing remains secure.

These tools also often have advanced security features. Examples include detailed access controls, specific access patterns, behavioral analysis, and comprehensive logging and monitoring systems. These features are essential for identifying and providing immediate alerts about any unusual activities or anomalies.

Sentra emerges as an optimal solution, boasting sophisticated data discovery and classification capabilities. It continuously evaluates data security controls and issues automated notifications. This addresses critical data vulnerabilities ingrained in its core.

Conclusion

In the era of cloud transformation and digital adoption, data emerges as the driving force behind innovations. Personal Identifiable Information (PII), which is a specific type of sensitive data, is crucial for organizations to deliver personalized offerings that cater to user preferences. The value inherent in data, both monetarily and personally, places it at the forefront, and attackers continually seek opportunities to exploit enterprise missteps.

Failure to adopt secure access and standard security controls by data-holding enterprises can lead to sensitive data exposure. Unaddressed, this vulnerability becomes a breeding ground for data breaches and system compromises. Elevating enterprise security involves implementing data security posture management and deploying robust security controls. Advanced tools with built-in data discovery and classification capabilities are essential to this success. Stringent security protocols fortify the tools, safeguarding data against vulnerabilities and ensuring the resilience of business operations.

If you want to learn more about how you can prevent sensitive data exposure, request a demo with our data security experts today.

<blogcta-big>

Discover Ron’s expertise, shaped by over 20 years of hands-on tech and leadership experience in cybersecurity, cloud, big data, and machine learning. As a serial entrepreneur and seed investor, Ron has contributed to the success of several startups, including Axonius, Firefly, Guardio, Talon Cyber Security, and Lightricks, after founding a company acquired by Oracle.

Subscribe

Latest Blog Posts

Veronica Marinov
May 15, 2025
5
Min Read
AI and ML

Ghosts in the Model: Uncovering Generative AI Risks

Ghosts in the Model: Uncovering Generative AI Risks

As artificial intelligence (AI) becomes deeply integrated into enterprise workflows, organizations are increasingly leveraging cloud-based AI services to enhance efficiency and decision-making.

In 2024, 56% of organizations adopted AI to develop custom applications, with 39% of Azure users leveraging Azure OpenAI services. However, with rapid AI adoption in cloud environments, security risks are escalating. As AI continues to shape business operations, the security and privacy risks associated with cloud-based AI services must not be overlooked. Understanding these risks (and how to mitigate them) is essential for organizations looking to protect their proprietary models and sensitive data.

When discussing AI services in cloud environments, there are two primary types of services that introduce different types of security and privacy risks. This article dives into these risks and explores best practices to mitigate them, ensuring organizations can leverage AI securely and effectively.

1. Leading Generative AI Platforms & Their Business Applications

Examples include OpenAI, Google, Meta, and Microsoft, which develop large-scale AI models and provide AI-related services, such as Azure OpenAI, Amazon Bedrock, Google’s Bard, Microsoft Copilot Studio. These services allow organizations to build AI Agents and GenAI services that  are designed to help users perform tasks more efficiently by integrating with existing tools and platforms. For instance, Microsoft Copilot can provide writing suggestions, summarize documents, or offer insights within platforms like Word or Excel.

What is RAG (Retrieval-Augmented Generation)?

Many AI systems use Retrieval-Augmented Generation (RAG) to improve accuracy. Instead of solely relying on a model’s pre-trained knowledge, RAG allows the system to fetch relevant data from external sources, such as a vector database, using algorithms like k-nearest neighbor. This retrieved information is then incorporated into the model’s response.

When used in enterprise AI applications, RAG enables AI agents to provide contextually relevant responses. However, it also introduces a risk - if access controls are too broad, users may inadvertently gain access to sensitive corporate data.

How Does RAG (Retrieval-Augmented Generation) Apply to AI Agents?

In AI agents, RAG is typically used to enhance responses by retrieving relevant information from a predefined knowledge base.

Example: In AWS Bedrock, you can define a serverless vector database in OpenSearch as a knowledge base for a custom AI agent. This setup allows the agent to retrieve and incorporate relevant context dynamically, effectively implementing RAG.

Security Risks of Generative AI Platforms

Custom generative AI applications, such as AI agents or enterprise-built copilots, are often integrated with organizational knowledge bases like Amazon S3, SharePoint, Google Drive, and other data sources. While these models are typically not directly trained on sensitive corporate data, the fact that they can access these sources creates significant security risks.

One potential risk is data exposure through prompts, but this only arises under certain conditions. If access controls aren’t properly configured, users interacting with AI agents might unintentionally or maliciously - prompt the model to retrieve confidential or private information.This isn’t limited to cleverly crafted prompts; it reflects a broader issue of improper access control and governance.

Configuration and Access Control Risks

The configuration of the AI agent is a critical factor. If an agent is granted overly broad access to enterprise data without proper role-based restrictions, it can return sensitive information to users who lack the necessary permissions. For instance, a model connected to an S3 bucket with sensitive customer data could expose that data if permissions aren’t tightly controlled.

A common scenario might involve an AI agent designed for Sales that has access to personally identifiable information (PII) or customer records. If the agent is not properly restricted, it could be queried by employees outside of Sales, such as developers - who should not have access to that data.

Example Risk Scenario

An employee asks a Copilot-like agent to summarize company-wide sales data. The AI returns not just high-level figures, but also sensitive customer or financial details that were unintentionally exposed due to lax access controls.

Challenges in Mitigating These Risks

The core challenge, particularly relevant to platforms like Sentra, is enforcing governance to ensure only appropriate data is used and accessible by AI services.

This includes:

  • Defining and enforcing granular data access controls.
  • Preventing misconfigurations or overly permissive settings.
  • Maintaining real-time visibility into which data sources are connected to AI models.
  • Continuously auditing data flows and access patterns to prevent leaks.

Without rigorous governance and monitoring, even well-intentioned GenAI implementations can lead to serious data security incidents.

2. ML and AI Studios for Building New Models

Many companies, such as large financial institutions, build their own AI and ML models to make better business decisions, or to improve their user experiences. Unlike large foundational models from major tech companies, these custom AI models are trained by the organization itself on their applications or corporate data.

Security Risks of Custom AI Models

  1. Weak Data Governance Policies - If data governance policies are inadequate, sensitive information, such as customers' Personally Identifiable Information (PII), could be improperly accessed or shared during the training process. This can lead to data breaches, privacy compliance violations, and unethical AI usage. The growing recognition of AI-related risks has driven the development of more AI compliance frameworks.
  2. Excessive Access to Training Data and AI Models - Granting unrestricted access to training datasets and machine learning (ML)/AI models increases the risk of data leaks and misuse. Without proper access controls, sensitive data used in training can be exposed to unauthorized individuals, leading to compliance and security concerns.
  3. AI Agents Exposing Sensitive Data -  AI agents that do not have proper safeguards can inadvertently expose sensitive information to a broad audience within an organization. For example, an employee could retrieve confidential data such as the CEO’s salary or employment contracts if access controls are not properly enforced.
  4. Insecure Model Storage – Once a model is trained, it is typically stored in the same environment (e.g., in Amazon SageMaker, the training job stores the trained model in S3). If not properly secured, proprietary models could be exposed to unauthorized access, leading to risks such as model theft.
  5. Deployment Vulnerabilities – A lack of proper access controls can result in unauthorized use of AI models. Organizations need to assess who has access: Is the model public? Can external entities interact with or exploit it?

Shadow AI and Forgotten Assets – AI models or artifacts that are not actively monitored or properly decommissioned can become a security risk. These overlooked assets can serve as attack vectors if discovered by malicious actors.

Example Risk Scenario

A bank develops an AI-powered feature that predicts a customer’s likelihood of repaying a loan based on inputs like financial history, employment status, and other behavioral indicators. While this feature is designed to enhance decision-making and customer experience, it introduces significant risk if not properly governed.

During development and training, the model may be exposed to personally identifiable information (PII), such as names, addresses, social security numbers, or account details, which is not necessary for the model’s predictive purpose.

⚠️ Best practice: Models should be trained only on the minimum necessary data required for performance, excluding direct identifiers unless absolutely essential. This reduces both privacy risk and regulatory exposure.

If the training pipeline fails to properly separate or mask this PII, the model could unintentionally leak sensitive information. For example, when responding to an end-user query, the AI might reference or infer details from another individual’s record - disclosing sensitive customer data without authorization.

This kind of data leakage, caused by poor data handling or weak governance during training, can lead to serious regulatory non-compliance, including violations of GDPR, CCPA, or other privacy frameworks.

Common Risk Mitigation Strategies and Their Limitations

Many organizations attempt to manage AI-related risks through employee training and awareness programs. Employees are taught best practices for handling sensitive data and using AI tools responsibly.
While valuable, this approach has clear limitations:

  • Training Alone Is Insufficient:
    Human error remains a major risk factor, even with proper training. Employees may unintentionally connect sensitive data sources to AI models or misuse AI-generated outputs.

  • Lack of Automated Oversight:
    Most organizations lack robust, automated systems to continuously monitor how AI models use data and to enforce real-time security policies. Manual review processes are often too slow and incomplete to catch complex data access risks in dynamic, cloud-based AI environments.
  • Policy Gaps and Visibility Challenges:
    Organizations often operate with multiple overlapping data layers and services. Without clear, enforceable policies, especially automated ones - certain data assets may remain unscanned or unprotected, creating blind spots and increasing risk.

Reducing AI Risks with Sentra’s Comprehensive Data Security Platform

Managing AI risks in the cloud requires more than employee training.
Organizations need to adopt robust data governance frameworks and data security platforms (like Sentra’s) that address the unique challenges of AI.

This includes:

  • Discovering AI Assets: Automatically identify AI agents, knowledge bases, datasets, and models across the environment.
  • Classifying Sensitive Data: Use automated classification and tagging to detect and label sensitive information accurately.
    Monitoring AI Data Access: Detect which AI agents and models are accessing sensitive data, or using it for training - in real time.
  • Enforcing Access Governance: Govern AI integrations with knowledge bases by role, data sensitivity, location, and usage to ensure only authorized users can access training data, models, and artifacts.
  • Automating Data Protection: Apply masking, encryption, access controls, and other protection methods automatically across data and AI artifacts used in training and inference processes.

By combining strong technical controls with ongoing employee training, organizations can significantly reduce the risks associated with AI services and ensure compliance with evolving data privacy regulations.

<blogcta-big>

Read More
Yair Cohen
January 28, 2025
5
Min Read
Data Security

Data Protection and Classification in Microsoft 365

Data Protection and Classification in Microsoft 365

Imagine the fallout of a single misstep—a phishing scam tricking an employee into sharing sensitive data. The breach doesn’t just compromise information; it shakes trust, tarnishes reputations, and invites compliance penalties. With data breaches on the rise, safeguarding your organization’s Microsoft 365 environment has never been more critical.

Data classification helps prevent such disasters. This article provides a clear roadmap for protecting and classifying Microsoft 365 data. It explores how data is saved and classified, discusses built-in tools for protection, and covers best practices for maintaining  Microsoft 365 data protection.

How Is Data Saved and Classified in Microsoft 365? 

Microsoft 365 stores data across tools and services. For example, emails are stored in Exchange Online, while documents and data for collaboration are found in Sharepoint and Teams, and documents or files for individual users are stored in OneDrive. This data is primarily unstructured—a format ideal for documents and images but challenging for identifying sensitive information.

All of this data is largely stored in an unstructured format typically used for documents and images. This format not only allows organizations to store large volumes of data efficiently; it also enables seamless collaboration across teams and departments. However, as unstructured data cannot be neatly categorized into tables or columns, it becomes cumbersome to discern what data is sensitive and where it is stored. 

To address this, Microsoft 365 offers a data classification dashboard that helps classify data of varying levels of sensitivity and data governed by different regulatory compliance frameworks. But how does Microsoft identify sensitive information with unstructured data? 

Microsoft employs advanced technologies such as RegEx scans, trainable classifiers, Bloom filters, and data classification graphs to identify and classify data as public, internal, or confidential. Once classified, data protection and governance policies are applied based on sensitivity and retention labels.

Data classification is vital for understanding, protecting, and governing data. With your ​​Microsoft 365 data classified appropriately, you can ensure seamless collaboration without risking data exposure.

Why data classification is important
Figure 1: Why data classification is important

Microsoft 365 Data Protection and Classification Tools

Microsoft 365 includes several key tools and frameworks for classifying and securing data. Here are a few. 

Microsoft Purview 

Microsoft Purview is a cornerstone of data classification and protection within Microsoft 365.

Key Features: 

  • Over 200+ prebuilt classifiers and the ability to create custom classifiers tailored to specific business needs.
  • Purview auto-classifies data across Microsoft 365 and other supported apps, such as Adobe Photoshop and Adobe PDF, while users work on them.
  • Sensitivity labels that apply encryption, watermarks, and access restrictions to secure sensitive data.
  • Double Key Encryption to ensure that sensitivity labels persist even when file formats change.
Sensitivity watermarks in M365
Figure 2: Sensitivity watermarks in Microsoft 365 (Source: Microsoft)
Figure 3: Sensitivity labels for information protection policies in Microsoft 365 (Source: Microsoft)

Purview autonomously applies sensitivity labels like "confidential" or "highly confidential" based on preconfigured policies, ensuring optimal access control. These labels persist even when files are shared or converted to other formats, such as from Word to PDF.

Additionally, Purview’s data loss prevention (DLP) policies prevent unauthorized sharing or deletion of sensitive data by flagging and reporting violations in real time. For example, if a sensitive file is shared externally, Purview can immediately block the transfer and alert your security team.

Sensitivity labeling for announcements in M365
Figure 4: Preventing data loss by using sensitivity labels (Source: Microsoft)

Microsoft Defender 

Microsoft Defender for Cloud Apps strengthens security by providing a cloud app discovery window to identify applications accessing data. Once identified, it classifies files within these applications based on sensitivity, applying appropriate protections as per preconfigured policies.

Microsoft Defender for Cloud - data sensitivity classification
Figure 5: Microsoft Defender data sensitivity classification (Source: Microsoft)

Key Features:

  • Data Sensitivity Classification: Defender identifies sensitive files and assigns protection based on sensitivity levels, ensuring compliance and reducing risk. For example, it labels files containing credit card numbers, personal identifiers, or confidential business information with sensitivity classifications like "Highly Confidential."
  • Threat Detection and Response: Defender detects known threats targeted at sensitive data in emails, collaboration tools (like SharePoint and Teams), URLs, file attachments, and OneDrive. If an admin account is compromised, Microsoft Defender immediately spots the threat, disables the account, and notifies your IT team to prevent significant damage.
  • Automation: Defender automates incident response, ensuring that malicious activities are flagged and remediated promptly.

Intune 

Microsoft Intune provides comprehensive device management and data protection, enabling organizations to enforce policies that safeguard sensitive information on both managed and unmanaged smartphones, computers, and other devices.

Key Features:

  • Customizable Compliance Policies: Intune allows organizations to enforce device compliance policies that align with internal and regulatory standards. For example, it can block non-compliant devices from accessing sensitive data until issues are resolved.
  • Data Access Control: Intune disallows employees from accessing corporate data on compromised devices or through insecure apps, such as those not using encryption for emails.
  • Endpoint Security Management: By integrating with Microsoft Defender, Intune provides endpoint protection and automated responses to detected threats, ensuring only secure devices can access your organization’s network.
Endpoint security overview
Figure 6: Intune device management portal (Source: Microsoft)

Intune supports organizations by enabling the creation and enforcement of device compliance policies tailored to both internal and regulatory standards. These policies detect non-compliant devices, issue alerts, and restrict access to sensitive data until compliance is restored. Conditional access ensures that only secure and compliant devices connect to your network.

Microsoft 365-managed apps like Outlook, Word, and Excel. These policies define which apps can access specific data, such as emails, and regulate permissible actions, including copying, pasting, forwarding, and taking screenshots. This layered security approach safeguards critical information while maintaining seamless app functionality.

Does Microsoft have a DLP Solution?

Microsoft 365’s data loss prevention (DLP) policies represent the implementation of the zero-trust framework. These policies aim to prevent oversharing, accidental deletion, and data leaks across Microsoft 365 services, including Exchange Online, SharePoint, Teams, and OneDrive, as well as Windows and macOS devices.

Retention policies, deployed via retention labels, help organizations manage the data lifecycle effectively.These labels ensure that data is retained only as long as necessary to meet compliance requirements, reducing the risks associated with prolonged data storage.

How DLP policies work
Figure 7: How DLP policies work (Source: Microsoft)

What is the Microsoft 365 Compliance Center?

The Microsoft 365 compliance center offers tools to manage policies and monitor data access, ensuring adherence to regulations. For example, DLP policies allow organizations to define specific automated responses when certain regulatory requirements—like GDPR or HIPAA—are violated.

Microsoft Purview Compliance Portal: This portal ensures sensitive data is classified, stored, retained, and used in adherence to relevant compliance regulations. Meanwhile, Microsoft 365’s MPIP ensures that only authorized users can access sensitive information, whether collaborating on Teams or sharing files in SharePoint. Together, these tools enable secure collaboration while keeping regulatory compliance at the forefront.

12 Best Practices for Microsoft 365 Data Protection and Classification

To achieve effective Microsoft 365 data protection and classification, organizations should follow these steps:

  1. Create precise labels, tags, and classification policies; don’t rely solely on prebuilt labels and policies, as definitions of sensitive data may vary by context.
  2. Automate labeling to minimize errors and quickly capture new datasets.
  3. Establish and enforce data use policies and guardrails automatically to reduce risks of data breaches, compliance failures, and insider threat risks. 
  4. Regularly review and update data classification and usage policies to reflect evolving threats, new data storage, and changing compliance laws.o policies must stay up to date to remain effective.
  5. Define context-appropriate DLP policies based on your business needs; factoring in remote work, ease of collaboration, regional compliance standards, etc.
  6. Apply encryption to safeguard data inside and outside your organization.
  7. Enforce role-based access controls (RBAC) and least privilege principles to ensure users only have access to data and can perform actions within the scope of their roles. This limits the risk of accidental data exposure, deletion, and cyberattacks.
  8. Create audit trails of user activity around data and maintain version histories to prevent and track data loss.
  9. Follow the 3-2-1 backup rule: keep three copies of your data, store two on different media, and one offsite.
  10. Leverage the full suite of Microsoft 365 tools to monitor sensitive data, detect real-time threats, and secure information effectively.
  11. Promptly resolve detected risks to mitigate attacks early.
  12. Ensure data protection and classification policies do not impede collaboration to prevent teams from creating shadow data, which puts your organization at risk of data breaches.

For example, consider #3. If a disgruntled employee starts transferring sensitive intellectual property to external devices in preparation for a ransomware attack, having the right data use policies in place will allow your organization to stop the threat before it escalates. 

Microsoft 365 Data Protection and Classification Limitations

Despite Microsoft 365’s array of tools, there are some key gaps. AI/ML-powered data security posture management (DSPM) and data detection and response (DDR) solutions fill these easily.

The top limitations of Microsoft 365 data protection and classification are the following:

  • Limitations Handling Large Volumes of Unstructured Data: Purview struggles to automatically classify and apply sensitivity labels to diverse and vast datasets, particularly in Azure services or non-Microsoft clouds. 
  • Contextless Data Classification: Without considering context, Microsoft Purview’s MPIP can lead to false positives (over-labeling non-sensitive data) or false negatives (missing sensitive data). 
  • Inconsistent Labeling Across Providers: Microsoft tools are limited to its ecosystem, making it difficult for enterprises using multi-cloud environments to enforce consistent organization-wide labeling.
  • Minimal Threat Response Capabilities: Microsoft Defender relies heavily on IT teams for remediation and lacks robust autonomous responses.
  • Sporadic Interruption of User Activity: Inaccurate DLP classifications can disrupt legitimate data transfers in collaboration channels, frustrating employees and increasing the risk of shadow IT workarounds.

Sentra Fills the Gap: Protection Measures to Address Microsoft 365 Data Risks

Today’s businesses must get ahead of data risks by instituting Microsoft 365 data protection and classification best practices such as least privilege access and encryption. Otherwise, they risk data exposure, damaging cyberattacks, and hefty compliance fines. However, implementing these best practices depends on accurate and context-sensitive data classification in Microsoft 365. 

Sentra’s Cloud-native Data Security Platform enables secure collaboration and file sharing across all Microsoft 365 services including SharePoint, OneDrive, Teams, OneNote, Office, Word, Excel, and more. Sentra provides data access governance, shadow data detection, and privacy audit automation for M365 data. It also evaluates risks and alerts for policy or regulatory violations.

Specifically, Sentra complements Purview in the following ways:

  1. Sentra Data Detection & Response (DDR): Continuously monitors for threats such as data exfiltration, weakening of data security posture, and other suspicious activities in real time. While Purview Insider Risk Management focuses on M365 applications, Sentra DDR extends these capabilities to Azure and non-Microsoft applications.
  2. Data Perimeter Protection: Sentra automatically detects and identifies an organization’s data perimeters across M365, Azure, and non-Microsoft clouds. It alerts “organizations when sensitive data leaves its boundaries, regardless of how it is copied or exported.
  3. Shadow Data Reduction: Using context-based analysis powered by Sentra’s DataTreks™, the platform identifies unnecessary shadow data, reducing the attack surface and improving data governance.
  4. Training Data Monitoring: Sentra monitors training datasets continuously, identifying privacy violations of sensitive PII or real-time threats like training data poisoning or suspicious access.
  5. Data Access Governance: Sentra adds to Purview’s data catalog by including metadata on users and applications with data access permissions, ensuring better governance.
  6. Automated Privacy Assessments: Sentra automates privacy evaluations aligned with frameworks like GDPR and CCPA, seamlessly integrating them into Purview’s data catalog.
  7. Rich Contextual Insights: Sentra delivers detailed data context to understand usage, sensitivity, movement, and unique data types. These insights enable precise risk evaluation, threat prioritization, and remediation, and they can be consumed via an API by DLP systems, SIEMs, and other tools.

By addressing these gaps, Sentra empowers organizations to enhance their Microsoft 365 data protection and classification strategies. Request a demo to experience Sentra’s innovative solutions firsthand.

<blogcta-big>

Read More
Team Sentra
December 26, 2024
5
Min Read
Data Security

Create an Effective RFP for a Data Security Platform & DSPM

Create an Effective RFP for a Data Security Platform & DSPM

This RFP Guide is designed to help organizations create their own RFP for selection of Cloud-native Data Security Platform (DSP) & Data Security Posture Management (DSPM) solutions. The purpose is to identify key essential requirements  that will enable effective discovery, classification, and protection of sensitive data across complex environments, including in public cloud infrastructures and in on-premises environments.

Instructions for Vendors

Each section provides essential and recommended requirements to achieve a best practice capability. These have been accumulated over dozens of customer implementations.  Customers may also wish to include their own unique requirements specific to their industry or data environment.

1. Data Discovery & Classification

Requirement Details
Shadow Data Detection Can the solution discover and identify shadow data across any data environment (IaaS, PaaS, SaaS, OnPrem)?
Sensitive Data Classification Can the solution accurately classify sensitive data, including PII, financial data, and healthcare data?
Efficient Scanning Does the solution support smart sampling of large file shares and data lakes to reduce and optimize the cost of scanning, yet provide full scan coverage in less time and lower cloud compute costs?
AI-based Classification Does the solution leverage AI/ML to classify data in unstructured documents and stores (Google Drive, OneDrive, SharePoint, etc) and achieve more than 95% accuracy?
Data Context Can the solution discern and ‘learn’ the business purpose (employee data, customer data, identifiable data subjects, legal data, synthetic data, etc.) of data elements and tag them accordingly?
Data Store Compatibility Which data stores (e.g., AWS S3, Google Cloud Storage, Azure SQL, Snowflake data warehouse, On Premises file shares, etc.) does the solution support for discovery?
Autonomous Discovery Can the solution discover sensitive data automatically and continuously, ensuring up to date awareness of data presence?
Data Perimeters Monitoring Can the solution track data movement between storage solutions and detect risky and non-compliant data transfers and data sprawl?

2. Data Access Governance

Requirement Details
Access Controls Does the solution map access of users and non-human identities to data based on sensitivity and sensitive information types?
Location Independent Control Does the solution help organizations apply least privilege access regardless of data location or movement?
Identity Activity Monitoring Does the solution identify over-provisioned, unused or abandoned identities (users, keys, secrets) that create unnecessary exposures?
Data Access Catalog Does the solution provide an intuitive map of identities, their access entitlements (read/write permissions), and the sensitive data they can access?
Integration with IAM Providers Does the solution integrate with existing Identity and Access Management (IAM) systems?

3. Posture, Risk Assessment & Threat Monitoring

Requirement Details
Risk Assessment Can the solution assess data security risks and assign risk scores based on data exposure and data sensitivity?
Compliance Frameworks Does the solution support compliance with regulatory requirements such as GDPR, CCPA, and HIPAA?
Similar Data Detection Does the solution identify data that has been copied, moved, transformed or otherwise modified that may disguise its sensitivity or lessen its security posture?
Automated Alerts Does the solution provide automated alerts for policy violations and potential data breaches?
Data Loss Prevention (DLP) Does the solution include DLP features to prevent unauthorized data exfiltration?
3rd Party Data Loss Prevention (DLP) Does the solution integrate with 3rd party DLP solutions?
User Behavior Monitoring Does the solution track and analyze user behaviors to identify potential insider threats or malicious activity?
Anomaly Detection Does the solution establish a baseline and use machine learning or AI to detect anomalies in data access or movement?

4. Incident Response & Remediation

Requirement Details
Incident Management Can the solution provide detailed reports, alert details, and activity/change history logs for incident investigation?
Automated Response Does the solution support automated incident response, such as blocking malicious users or stopping unauthorized data flows (via API integration to native cloud tools or other)?
Forensic Capabilities Can the solution facilitate forensic investigation, such as data access trails and root cause analysis?
Integration with SIEM Can the solution integrate with existing Security Information and Event Management (SIEM) or other analysis systems?

5. Infrastructure & Deployment

Requirement Details
Deployment Models Does the solution support flexible deployment models (on-premise, cloud, hybrid)? Is the solution agentless?
Cloud Native Does the solution keep all data in the customer’s environment, performing classification via serverless functions? (ie. no data is ever removed from customer environment - only metadata)
Scalability Can the solution scale to meet the demands of large enterprises with multi-petabyte data volumes?
Performance Impact Does the solution work asynchronously without performance impact on the data production environment?
Multi-Cloud Support Does the solution provide unified visibility and management across multiple cloud providers and hybrid environments?

6. Operations & Support

Requirement Details
Onboarding Does the solution vendor assist customers with onboarding? Does this include assistance with customization of policies, classifiers, or other settings?
24/7 Support Does the vendor provide 24/7 support for addressing urgent security issues?
Training & Documentation Does the vendor provide training and detailed documentation for implementation and operation?
Managed Services Does the vendor (or its partners) offer managed services for organizations without dedicated security teams?
Integration with Security Tools Can the solution integrate with existing security tools, such as firewalls, DLP systems, and endpoint protection systems?

7. Pricing & Licensing

Requirement Details
Pricing Model What is the pricing structure (e.g., per user, per GB, per endpoint)?
Licensing What licensing options are available (e.g., subscription, perpetual)?
Additional Costs Are there additional costs for support, maintenance, or feature upgrades?

Conclusion

This RFP template is designed to facilitate a structured and efficient evaluation of DSP and DSPM solutions. Vendors are encouraged to provide comprehensive and transparent responses to ensure an accurate assessment of their solution’s capabilities.

Sentra’s cloud-native design combines powerful Data Discovery and Classification, DSPM, DAG, and DDR capabilities into a complete Data Security Platform (DSP). With this, Sentra customers achieve enterprise-scale data protection and do so very efficiently - without creating undue burdens on the personnel who must manage it.

To learn more about Sentra’s DSP, request a demo here and choose a time for a meeting with our data security experts. You can also choose to download the RFP as a pdf.

Read More
decorative ball
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security.Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!