Sentra Launches Breakthrough AI Classification Capabilities!
All Resources
In this article:
minus iconplus icon
Share the Blog

Data Loss Prevention for Google Workspace

March 19, 2025
4
Min Read
Data Loss Prevention

We know that Google Workspace (formerly known as G Suite) and its assortment of services, including Gmail, Drive, Calendar, Meet, Docs, Sheets, Slides, Chat, and Vids, is a powerhouse for collaboration.

But the big question is: Do you know where your Google Workspace data is—and if it’s secure and who has access to it?

While Google Workspace has become an indispensable pillar in cloud operations and collaboration, its widespread adoption introduces significant security risks that businesses simply can't afford to ignore. To optimize Google Workspace data protection, enterprises must know how Google Workspace protects and classifies data. Knowing the scope, gaps, limitations, and silos of Google Workspace data protection mechanisms can help businesses strategize more effectively to mitigate data risks and ensure more holistic data security coverage across multi-cloud estates.

The Risks of Google Workspace Security

As with any dynamic cloud platform, Google Workspace is susceptible to data security risks, the most dangerous of which can do more than just undercut its benefits. Primarily, businesses should be concerned about the exposure of sensitive data nested within large volumes of unstructured data. For instance, if an employee shares a Google Drive folder or document containing sensitive data but with suboptimal access controls, it could snowball into a large-scale data security disaster. 

Without comprehensive visibility into sensitive data exposures across Google Workspace applications, businesses risk serious security threats. Besides sensitive data exposure, these include exploitable vulnerabilities, external attacks, human error, and shadow data. Complex shared responsibility models and unmet compliance policies also loom large, threatening the security of your data. 

To tackle these risks, businesses must prioritize and optimize data security across Google Workspace products while acknowledging that Google is rarely the sole platform an enterprise uses.

How Does Google Store Your Data?

To understand how to protect sensitive data in Google Workspace, it's essential to first examine how Google stores and manages this data. Why? Because the intricacies of data storage architectures and practices have significant implications for your security posture. 

Here are three-steps to help you understand and optimize your data storage in Google Workspace:

1. Know Where and How Google Stores Your Data

  • Google stores your files in customized servers in secure data centers.
  • Your data is automatically distributed across multiple regions, guaranteeing redundancy and availability.

2. Control Data Retention

  • Google retains your Workspace data until you or an admin deletes it.
  • Use Google Vault to manage retention policies and set custom retention rules for emails and files.
  • Regularly review and clean up unnecessary stored data to reduce security risks.

3. Secure Your Stored Data

  • Enable encryption for sensitive files in Google Drive.
  • Restrict who can view, edit, and share stored documents by implementing access controls.
  • Monitor data access logs to detect unauthorized access.

How Does Google Workspace Classify Your Data?

Google’s built-in classification tools are an acceptable starting point. However, they fall short of securing and classifying all unstructured data across complex cloud environments. This is because today's cloud attack surface expands across multiple providers, making security more complex than ever before. Consequently, Google's myopic classification often snowballs into bigger security problems, as data moves. Because of this evolving attack surface across multi-cloud environments, risk-ridden shadow data and unstructured data fester in Google Workspace apps. 

The Issue of Unstructured Data

It’s important to remember that most enterprise data is unstructured. Unstructured data refers to data that isn’t stored in standardized or easily manageable formats. In Google Workspace, this could be data in a Gmail draft, multimedia files in Google Drive, or other informal exchanges of sensitive information between Workspace apps. 

For years, unstructured data has been a nightmare for businesses to map, manage, and secure. Unstructured document stores and employee GDrives are hot zones for data risks. Native Google Drive data classification capabilities can be a useful source of metadata to support a more comprehensive external data classification solution. A cloud-native DSP solution can map, classify, and organize sensitive data, including PHI, PCI, and business secrets, across both Google Workspace and cloud platforms that Google's built-in capabilities do not cover, like AWS and S3.

How Does Google Workspace Protect Your Data?

Like its built-in classification mechanisms, Google's baseline security features, such as encryption and access controls, are good for simple use cases but aren't capable enough to fully protect complex environments. 

For both the classification and security of unstructured data, Google’s native tools may not suffice. A robust data loss prevention (DLP) solution should ideally do the trick for unstructured data. However, Google Workspace DLP alone and other protection measures (formerly referred to as G Suite data protection) are unlikely to provide holistic data security, especially in dynamic cloud environments.

Google Native Tool Challenges

Google’s basic protection measures don't tackle the full spectrum of critical Google Workspace data risks because they can't permeate unstructured documents, where sensitive data may reside in various protected states.

For example, an employee's personal Google Drive can potentially house exposed and exploitable sensitive data that can slip through Google's built-in security mechanisms. It’s also important to remember that Google Workspace data loss prevention capabilities do nothing to protect critical enterprise data hosted in other cloud platforms. 

Ultimately, while Google provides some security controls, they alone don’t offer the level of protection that today’s complex cloud environments demand. To close these gaps, businesses must look to complement Google’s built-in capabilities and invest in robust data security solutions.

Only a highly integrable data security tool with advanced AI and ML capabilities can protect unstructured data across Google Workspace’s diverse suite of apps, and further, across the entire enterprise data estate. This has become mandatory since multi-cloud architectures are the norm today.

A Robust Data Security Platform: The Key to Holistic Google Workspace Data Protection 

The speed, complexity, and rapid evolution of multi-cloud and hybrid cloud environments demand more advanced data security capabilities than Google Workspace’s native storage, classification, and protection features provide. 

It is becoming increasingly difficult to mitigate the risks associated with sensitive data.

To successfully remediate these risks, businesses urgently need robust data security posture management (DSPM) and data detection and response (DDR) solutions - preferably all in one platform. There's simply no other way to guarantee comprehensive data protection across Google Workspace. Furthermore, as mentioned earlier, most businesses don't exclusively use Google platforms. They often mix and match services from cloud providers like Google, Azure, and AWS.

In other words, besides limited data classification and protection, Google's built-in capabilities won't be able to extend into other branches of an enterprise's multi-cloud architecture. And having siloed data security tools for each of these cloud platforms increases costs and further complicates administration that can lead to critical coverage gaps. That's why the optimal solution is a holistic platform that can fill the gaps in Google's existing capabilities to provide unified data classification, security, and coverage across all other cloud platforms.

Sentra: The Ultimate Cloud-Agnostic Data Protection and Classification Solution 

To truly secure sensitive data across Google Workspace and beyond, enterprises need a cloud-native data security platform. That’s where Sentra comes in. It hands you enterprise-scale data protection by seamlessly integrating powerful capabilities like data discovery and classification, data security posture management (DSPM), data access governance (DAG), and data detection and response (DDR) into an all-in-one, easy-to-use platform.

By combining rule-based and large language model (LLM)-based classification, Sentra ensures accurate and scalable data security across Workspace apps like Google Drive—as well as data contained in apps from other cloud providers. This is crucial for any enterprise that hosts its data across disparate cloud platforms, not just Workspace. To classify unstructured data across these platforms, Sentra leverages supervised AI training models like BERT. It also uses zero-shot classification techniques to zero in on and accurately classify unstructured data. 

Sentra is particularly useful for anyone asking business-, industry-, or geography-specific data security questions such as “Does Google Workspace have HIPAA compliance frameworks?” and “Is my organization's use of Google Workspace GDPR-compliant?” The short answer to these questions: Integrate Sentra with your Google Workspace apps and you will see. 

Boost Your Google Workspace Data Protection with Sentra

By integrating Sentra with Google Workspace, companies can leverage AI-driven insights to distinguish employee data from customer data, ensuring a clearer understanding of their information landscape. Sentra also identifies customer-specific data types, such as personally identifiable information (PII), protected health information (PHI), product IDs, private codes, and localization requirements. Additionally, it detects toxic data combinations that may pose security risks.

Beyond insights, Sentra provides robust data protection through comprehensive inventorying and classification of unstructured data. It helps organizations right-size permissions, expose shadow data, and implement real-time detection of sensitive data exposure, security breaches, and suspicious activity, ensuring a proactive approach to data security.

No matter where your unstructured data resides, whether in Google Drive or any other cloud service, Sentra ensures it is accurately identified, classified, and protected with over 95% precision.

If you’re ready to take control of your data security, book a demo to discover how Sentra’s AI-driven protection secures your most valuable information across Google Workspace and beyond.

<blogcta-big>

Meni is an experienced product manager and the former founder of Pixibots (A mobile applications studio). In the past 15 years, he gained expertise in various industries such as: e-commerce, cloud management, dev-tools, mobile games, and more. He is passionate about delivering high quality technical products, that are intuitive and easy to use.

Subscribe

Latest Blog Posts

David Stuart
David Stuart
Gilad Golani
Gilad Golani
December 4, 2025
3
Min Read

Zero Data Movement: The New Data Security Standard that Eliminates Egress Risk

Zero Data Movement: The New Data Security Standard that Eliminates Egress Risk

Cloud adoption and the explosion of data have boosted business agility, but they’ve also created new headaches for security teams. As companies move sensitive information into multi-cloud and hybrid environments, old security models start to break down. Shuffling data for scanning and classification adds risk, piles on regulatory complexity, and drives up operational costs.

Zero Data Movement (ZDM) offers a new architectural approach, reshaping how advanced Data Security Posture Management (DSPM) platforms provide visibility, protection, and compliance. This post breaks down what makes ZDM unique, why it matters for security-focused enterprises, and how Sentra provides an innovative agentless and scalable design that is genuinely a zero data movement DSPM .

Defining Zero Data Movement Architecture

Zero Data Movement (ZDM) sets a new standard in data security. The premise is straightforward: sensitive data should stay in its original environment for security analysis, monitoring, and enforcement. Older models require copying, exporting, or centralizing data to scan it, while ZDM ensures that all security actions happen directly where data resides.

ZDM removes egress risk -shrinking the attack surface and reducing regulatory issues. For organizations juggling large cloud deployments and tight data residency rules, ZDM isn’t just an improvement - it's essential. Groups like the Cloud Security Alliance and new privacy regulations are moving the industry toward designs that build in privacy and non-stop protection.

Risks of Data Movement: Compliance, Cost, and Egress Exposure

Every time data is copied, exported, or streamed out of its native environment, new risks arise. Data movement creates challenges such as:

  • Egress risk: Data at rest or in transit outside its original environment  increases risk of breach, especially as those environments may be less secure.
  • Compliance and regulatory exposure: Moving data across borders or different clouds can break geo-fencing and privacy controls, leading to potential violations and steep fines.
  • Loss of context and control: Scattered data makes it harder to monitor everything, leaving gaps in visibility.
  • Rising total cost of ownership (TCO): Scanning and classification can incur heavy cloud compute costs - so efficiency matters.  Exporting or storing data, especially shadow data, drives up storage, egress, and compliance costs as well.

As more businesses rely on data, moving it unnecessarily only increases the risk - especially with fast-changing cloud regulations.

Legacy and Competitor Gaps: Why Data Movement Still Happens

Not every security vendor practices true zero data movement, and the differences are notable. Products from Cyera, Securiti, or older platforms still require temporary data exporting or duplication for analysis. This might offer a quick setup, but it exposes users to egress risks, insider threats, and compliance gaps - problems that are worse in regulated fields.

Competitors like Cyera often rely on shortcuts that fall short of ZDM’s requirements. Securiti and similar providers depend on connectors, API snapshots, or central data lakes, each adding potential risks and spreading data further than necessary. With ZDM, security operations like monitoring and classification happen entirely locally, removing the need to trust external storage or aggregation. For more detail on how data movement drives up risk.

The Business Value of Zero Data Movement DSPM

Zero data movement DSPM changes the equation for businesses:

  • Designed for compliance: Data remains within controlled environments, shrinking audit requirements and reducing breach likelihood.
  • Lower TCO and better efficiency: Eliminates hidden expenses from extra storage, duplicate assets, and exporting to external platforms.
  • Regulatory clarity and privacy: Supports data sovereignty, cross-border rules, and new zero trust frameworks with an egress-free approach.

Sentra’s agentless, cloud-native DSPM provides these benefits by ensuring sensitive data is never moved or copied. And Sentra delivers these benefits at scale - across multi-petabyte enterprise environments - without the performance and cost tradeoffs others suffer from. Real scenarios show the results: financial firms keep audit trails without data ever leaving allowed regions. Healthcare providers safeguard PHI at its source. Global SaaS companies secure customer data at scale, cost-effectively while meeting regional rules.

Future-Proofing Data Security: ZDM as the New Standard

With data volumes expected to hit 181 zettabytes in 2025, older protection methods that rely on moving data can’t keep up. Zero data movement architecture meets today's security demands and supports zero trust, metadata-driven access, and privacy-first strategies for the future.

Companies wanting to avoid dead ends should pick solutions that offer unified discovery, classification and policy enforcement without egress risk. Sentra’s ZDM architecture makes this possible, allowing organizations to analyze and protect information where it lives, at cloud speed and scale.

Conclusion

Zero Data Movement is more than a technical detail - it's a new architectural standard for any organization serious about risk control, compliance, and efficiency. As data grows and regulations become stricter, the old habits of moving, copying, or centralizing sensitive data will no longer suffice.

Sentra stands out by delivering a zero data movement DSPMplatform that's agentless, real-time, and truly multicloud. For security leaders determined to cut egress risk, lower compliance spending, and get ahead in privacy, ZDM is the clear path forward.

Read More
Shiri Nossel
Shiri Nossel
December 1, 2025
4
Min Read

How Sentra Uncovers Sensitive Data Hidden in Atlassian Products

How Sentra Uncovers Sensitive Data Hidden in Atlassian Products

Atlassian tools such as Jira and Confluence are the beating heart of software development and IT operations. They power everything from sprint planning to debugging production issues. But behind their convenience lies a less-visible problem: these collaboration platforms quietly accumulate vast amounts of sensitive data often over years that security teams can’t easily monitor or control.

The Problem: Sensitive Data Hidden in Plain Sight

Many organizations rely on Jira to manage tickets, track incidents, and communicate across teams. But within those tickets and attachments lies a goldmine of sensitive information:

  • Credentials and access keys to different environments.
  • Intellectual property, including code snippets and architecture diagrams.
  • Production data used to reproduce bugs or validate fixes — often in violation of data-handling regulations.
  • Real customer records shared for troubleshooting purposes.

This accumulation isn’t deliberate; it’s a natural byproduct of collaboration. However, it results in a long-tail exposure risk - historical tickets that remain accessible to anyone with permissions.

The Insider Threat Dimension

Because Jira and Confluence retain years of project history, employees and contractors may have access to data they no longer need. In some organizations, teams include offshore or external contributors, multiplying the risk surface. Any of these users could intentionally or accidentally copy or export sensitive content at any moment.

Why Sensitive Data Is So Hard to Find

Sensitive data in Atlassian products hides across three levels, each requiring a different detection approach:

  1. Structured Data (Records): Every ticket or page includes structured fields - reporter, status, labels, priority. These schemas are customizable, meaning sensitive fields can appear unpredictably. Security teams rarely have visibility or consistent metadata across instances.

  2. Unstructured Data (Descriptions & Discussions): Free-text fields are where developers collaborate — and where secrets often leak. Comments can contain access tokens, internal URLs, or step-by-step guides that expose system details.
  3. Unstructured Data (Attachments): Screenshots, log files, spreadsheets, code exports, or even database snapshots are commonly attached to tickets. These files may contain credentials, customer PII, or proprietary logic, yet they are rarely scanned or governed.
Collaboration Platform DB - Jira issue screenshot (with sensitive content redacted) to visualize these three levels from the Demo env

The Challenge for Security Teams

Traditional security tools were never designed for this kind of data sprawl. Atlassian environments can contain millions of tickets and pages, spread across different projects and permissions. Manually auditing this data is impractical. Even modern DLP tools struggle to analyze the context of free text or attachments embedded within these platforms.

Compliance teams face an uphill battle: GDPR, HIPAA, and SOC 2 all require knowing where sensitive data resides. Yet in most Atlassian instances, that visibility is nonexistent.

How Sentra Solves the Problem

Sentra takes a different approach. Its cloud-native data security platform discovers and classifies sensitive data wherever it lives - across SaaS applications, cloud storage, and on-prem environments. When connecting your atlassian environment, Sentra delivers visibility and control across every layer of Jira and Confluence.

Comprehensive Coverage

Sentra delivers consistent data governance across SaaS and cloud-native environments. When connected to Atlassian Cloud, Sentra’s discovery engine scans Jira and Confluence content to uncover sensitive information embedded in tickets, pages, and attachments, ensuring full visibility without impacting performance.

In addition, Sentra’s flexible architecture can be extended to support hybrid environments, providing organizations with a unified view of sensitive data across diverse deployment models.

AI-Based Classification

Using advanced AI models, Sentra classifies data across all three tiers:

  • Structured metadata, identifying risky fields and tags.
  • Unstructured text, analyzing ticket descriptions, comments, and discussions for credentials, PII, or regulated data.
  • Attachments, scanning files like logs or database snapshots for hidden secrets.

This contextual understanding distinguishes between harmless content and genuine exposure, reducing false positives.

Full Lifecycle Scanning

Sentra doesn’t just look at new tickets, it scans the entire historical archive to detect legacy exposure, while continuously monitoring for ongoing changes. This dual approach helps security teams remediate existing risks and prevent future leaks.

The Real-World Impact

Organizations using Sentra gain the ability to:

  • Prevent accidental leaks of credentials or production data in collaboration tools.
  • Enforce compliance by mapping sensitive data across Jira and Confluence.
  • Empower DevOps and security teams to collaborate safely without stifling productivity.

Conclusion

Collaboration is essential, but it should never compromise data security. Atlassian products enable innovation and speed, yet they also hold years of unmonitored information. Sentra bridges that gap by giving organizations the visibility and intelligence to discover, classify, and protect sensitive data wherever it lives, even in Jira and Confluence.

<blogcta-big>

Read More
Gilad Golani
Gilad Golani
November 27, 2025
3
Min Read

Unstructured Data Is 80% of Your Risk: Why DSPM 1.0 Vendors, Like Varonis and Cyera, Fail to Protect It at Petabyte Scale

Unstructured Data Is 80% of Your Risk: Why DSPM 1.0 Vendors, Like Varonis and Cyera, Fail to Protect It at Petabyte Scale

Unstructured data is the fastest-growing, least-governed, and most dangerous class of enterprise data. Emails, Slack messages, PDFs, screenshots, presentations, code repositories, logs, and the endless stream of GenAI-generated content — this is where the real risk lives.

The Unstructured data dilemma is this: 80% of your organization’s data is essentially invisible to your current security tools, and the volume is climbing by up to 65% each year. This isn’t just a hypothetical - it’s the reality for enterprises as unstructured data spreads across cloud and SaaS platforms. Yet, most Data Security Posture Management (DSPM) solutions - often called DSPM 1.0 - were never built to handle this explosion at petabyte scale. Especially legacy vendors and first-generation players like Cyera — were never designed to handle unstructured data at scale. Their architectures, classification engines, and scanning models break under real enterprise load.

Looking ahead to 2026, unstructured data security risk stands out as the single largest blind spot in enterprise security. If overlooked, it won’t just cause compliance headaches and soaring breach costs - it could put your organization in the headlines for all the wrong reasons.

The 80% Problem: Unstructured Data Dominates Your Risk

The Scale You Can’t Ignore - Over 80% of enterprise data is unstructured

  • Unstructured data is growing 55-65% per year; by 2025, the world will store more than 180 zettabytes of it.
  • 95% of organizations say unstructured data management is a critical challenge but less than 40% of data security budgets address this high-risk area. Unstructured data is everywhere: cloud object stores, SaaS apps, collaboration tools, and legacy file shares. Unlike structured data in databases, it often lacks consistent metadata, access controls, or even basic visibility. This “dark data” is behind countless breaches, from accidental file exposures and overshared documents to sensitive AI training datasets left unmonitored.

The Business Impact - The average breach now costs $4-4.9M, with unstructured data often at the center.

  • Poor data quality, mostly from unstructured sources, costs the U.S. economy $3.1 trillion each year.
  • More than half of organizations report at least one non-compliance incident annually, with average costs topping $1M. The takeaway: Unstructured data isn’t just a storage problem.

Why DSPM 1.0 Fails: The Blind Spots of Legacy Approaches

Traditional Tools Fall Short in Cloud-First, Petabyte-Scale Environments

Legacy DSPM and DCAP solutions, such as Varonis or Netwrix - were built for an era when data lived on-premises, followed predictable structures, and grew at a manageable pace.

In today’s cloud-first reality, their limitations have become impossible to ignore:

  • Discovery Gaps: Agent-based scanning can’t keep up with sprawling, constantly changing cloud and SaaS environments. Shadow and dark data across platforms like Google Drive, Dropbox, Slack, and AWS S3 often go unseen.
  • Performance Limits: Once environments exceed 100 TB, and especially as they reach petabyte scale—these tools slow dramatically or miss data entirely.
  • Manual Classification: Most legacy tools rely on static pattern matching and keyword rules, causing them to miss sensitive information hidden in natural language, code, images, or unconventional file formats.
  • Limited Automation: They generate alerts but offer little or no automated remediation, leaving security teams overwhelmed and forcing manual cleanup.
  • Siloed Coverage: Solutions designed for on-premises or single-cloud deployments create dangerous blind spots as organizations shift to multi-cloud and hybrid architectures.

Example: Collaboration App Exposure

A global enterprise recently discovered thousands of highly sensitive files—contracts, intellectual property, and PII—were unintentionally shared with “anyone with the link” inside a cloud collaboration platform. Their legacy DSPM tool failed to identify the exposure because it couldn’t scan within the app or detect real-time sharing changes.

Further, even Emerging DSPM tools often rely on pattern matching or LLM-based scanning. These approaches also fail for three reasons:

  • Inaccuracy at scale: LLMs hallucinate, mislabel, and require enormous compute.
  • Cost blow-ups: Vendors pass massive cloud bills back to customers or incur inordinate compute cost.
  • Architectural limitations: Without clustering and elastic scaling, large datasets overwhelm the system.

This is exactly where Cyera and legacy tools struggle - and where Sentra’s SLM-powered classifier thrives with >99% accuracy at a fraction of the cost.

The New Mandate: Securing Unstructured Data in 2026 and Beyond

GenAI, and stricter privacy laws (GDPR, CCPA, HIPAA) have raised the stakes for unstructured data security. Gartner now recommends Data Access Governance (DAG) and AI-driven classification to reduce oversharing and prepare for AI-centric workloads.

What Modern Security Leaders Need - Agentless, Real-Time Discovery: No deployment hassles, continuous visibility, and coverage for unstructured data stores no matter where they live.

  • Petabyte-Scale Performance: Scan, classify, and risk-score all data, everywhere it lives.
  • AI-Driven Deep Classification: Use of natural language processing (NLP), Domain-specific  Small Language Models (SLMs), and context analysis for every unstructured format.
  • Automated Remediation: Playbooks that fix exposures, govern permissions, and ensure compliance without manual work.
  • Multi-Cloud & SaaS Coverage: Security that follows your data, wherever it goes.

Sentra: Turning the 80% Blind Spot into a Competitive Advantage

Sentra was built specifically to address the risks of unstructured data in 2026 and beyond. There are nuances involved in solving this.  Selecting an appropriate solution is key to a sustainable approach. Here’s what sets Sentra apart:
 

  • Agentless Discovery Across All Environments:Instantly scans and classifies unstructured data across AWS, Azure, Google, M365, Dropbox, legacy file shares, and more - no agents required, no blind spots left behind.
  • Petabyte-Tested Performance:Designed for Fortune 500 scale, Sentra keeps speed and accuracy high across petabytes, not just terabytes.
  • AI-Powered Deep Classification:Our platform uses advanced NLP, SLMs, and context-aware algorithms to classify, label, and risk-score every file - including code, images, and AI training data, not just structured fields.
  • Continuous, Context-Rich Visibility:Real-time risk scoring, identity and access mapping, and automated data lineage show not just where data lives, but who can access it and how it’s used.
  • Automated Remediation and Orchestration: Sentra goes beyond alerts. Built-in playbooks fix permissions, restrict sharing, and enforce policies within seconds.
  • Compliance-First, Audit-Ready: Quickly spot compliance gaps, generate audit trails, and reduce regulatory risk and reporting costs.     

During a recent deployment with a global financial services company, Sentra uncovered 40% more exposed sensitive files than their previous DSPM tool. Automated remediation covered over 10 million documents across three clouds, cutting manual investigation time by 80%.

Actionable Takeaways for Security Leaders 

1. Put Unstructured Data at the Center of Your 2026 Security Plan: Make sure your DSPM strategy covers all data, especially “dark” and shadow data in SaaS, object stores, and collaboration platforms.

2.  Choose Agentless, AI-Driven Discovery: Legacy, agent-based tools can’t keep up. And underperforming emerging tools may not adequately scale.  Look for continuous, automated scanning and classification that scales with your data.

3.  Automate Remediation Workflows: Visibility is just the start; your platform should fix exposures and enforce policies in real time.

4.  Adopt Multi-Cloud, SaaS-Agnostic Solutions: Your data is everywhere, and your security should be too. Ensure your solution supports all of your unstructured data repositories.

5.  Make Compliance Proactive: Use real-time risk scoring and automated reporting to stay ahead of auditors and regulators.

    

Conclusion: Ready for the 80% Challenge?

With petabyte-scale, cloud-first data, ignoring unstructured data risk is no longer an option. Traditional DSPM tools can’t keep up, leaving most of your data - and your business - vulnerable. Sentra’s agentless, AI-powered platform closes this gap, delivering the discovery, classification, and automated response you need to turn your biggest blind spot into your strongest defense. See how Sentra uncovers your hidden risk - book an instant demo today.

Don’t let unstructured data be your organization’s Achilles’ heel. With Sentra, enterprises finally have a way to secure the data that matters most.

<blogcta-big>

Read More
decorative ball
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security. Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!

Before you go...

Get the Gartner Customers' Choice for DSPM Report

Read why 98% of users recommend Sentra.

Gartner Certificate for Sentra