Sentra Launches Breakthrough AI Classification Capabilities!
All Resources
In this article:
minus iconplus icon
Share the Blog

Secure AI Adoption for Enterprise Data Protection: Are You Prepared?

June 11, 2025
5
Min Read
AI and ML

In today’s fast-moving digital landscape, enterprise AI adoption presents a fascinating paradox for leaders: AI isn’t just a tool for innovation; it’s also a gateway to new security challenges. Organizations are walking a tightrope: Adopt AI to remain competitive, or hold back to protect sensitive data.
With nearly two-thirds of security leaders even considering a ban on AI-generated code due to potential security concerns, it’s clear that this tension is creating real barriers to AI adoption.

A data-first security approach provides solid guarantees for enterprises to innovate with AI safely. Since AI thrives on data - absorbing it, transforming it, and creating new insights - the key is to secure the data at its very source.

Let’s explore how data security for AI can build robust guardrails throughout the AI lifecycle, allowing enterprises to pursue AI innovation confidently.

Data Security Concerns with AI

Every AI system is only as strong as its weakest data link. Modern AI models rely on enormous data sets for both training and inference, expanding the attack surface and creating new vulnerabilities. Without tight data governance, even the most advanced AI models can become entry points for cyber threats.

How Does AI Store And Process Data?

The AI lifecycle includes multiple steps, each introducing unique vulnerabilities. Let’s consider the three main high-level stages in the AI lifecycle:

  • Training: AI models extract and learn patterns from data, sometimes memorizing sensitive information that could later be exposed through various attack vectors.
  • Storage: Security gaps can appear in model weights, vector databases, and document repositories containing valuable enterprise data.
  • Inference: This prediction phase introduces significant leakage risks, particularly with retrieval-augmented generation (RAG) systems that dynamically access external data sources.

Data is everywhere in AI. And if sensitive data is accessible at any point in the AI lifecycle, ensuring complete data protection becomes significantly harder.

AI Adoption Challenges

Reactive measures just won’t cut it in the rapidly evolving world of AI. Proactive security is now a must. Here’s why:

  1. AI systems evolve faster than traditional security models can adapt.

New AI models (like DeepSeek and Qwen) are popping up constantly, each introducing novel attack surfaces and vulnerabilities that can change with every model update..

Legacy security approaches that merely react to known threats simply can't keep pace, as AI demands forward-thinking safeguards.

  1. Reactive approaches usually try to remediate at the last second.

Reactive approaches usually rely on low-latency inline AI output monitoring, which is the last step in a chain of failures that lead to data loss and exfiltration, and the most challenging position to prevent data-related incidents. 

Instead, data security posture management (DSPM) for AI addresses the issue at its source, mitigating and remediating sensitive data exposure and enforcing a least-privilege, multi-layered approach from the outset.

  1. AI adoption is highly interoperable, expanding risk surfaces.

Most enterprises now integrate multiple AI models, frameworks, and environments (on-premise AI platforms, cloud services, external APIs) into their operations. These AI systems dynamically ingest and generate data across organizational boundaries, challenging consistent security enforcement without a unified approach.

Traditional security strategies, which only respond to known threats, can’t keep pace. Instead, a proactive, data-first security strategy is essential. By protecting information before it reaches AI systems, organizations can ensure AI applications process only properly secured data throughout the entire lifecycle and prevent data leaks before they materialize into costly breaches.

Of course, you should not stop there: You should also extend the data-first security layer to support multiple AI-specific controls (e.g., model security, endpoint threat detection, access governance).

What Are the Security Concerns with AI for Enterprises?

Unlike conventional software, AI systems continuously learn, adapt, and generate outputs, which means new security risks emerge at every stage of AI adoption. Without strong security controls, AI can expose sensitive data, be manipulated by attackers, or violate compliance regulations.

For organizations pursuing AI for organization-wide transformation, understanding AI-specific risks is essential:

  • Data loss and exfiltration: AI systems essentially share information contained in their training data and RAG knowledge sources and can act as a “tunnel” through existing data access governance (DAG) controls, with the ability to find and output sensitive data that the user is not authorized to access.
    In addition, Sentra’s rich best-of-breed sensitive data detection and classification empower AI to perform DLP (data loss prevention) measures autonomously by using sensitivity labels.
  • Compliance & privacy risks: AI systems that process regulated information without appropriate controls create substantial regulatory exposure. This is particularly true in heavily regulated sectors like healthcare and financial services, where penalties for AI-related data breaches can reach millions of dollars.
  • Data poisoning: Attackers can subtly manipulate training and RAG data to compromise AI model performance or introduce hidden backdoors, gradually eroding system reliability and integrity.
  • Model theft: Proprietary AI models represent significant intellectual property investments. Inadequate security can leave such valuable assets vulnerable to extraction, potentially erasing years of AI investment advantage.
  • Adversarial attacks: These increasingly prevalent threats involve strategic manipulations of AI model inputs designed to hijack predictions or extract confidential information. Adequate machine learning endpoint security has become non-negotiable.

All these risks stem from a common denominator: a weak data security foundation allowing for unsecured, exposed, or manipulated data.

The solution? A strong data security posture management (DSPM) coupled with comprehensive visibility into the AI assets in the system and the data they can access and expose. This will ensure AI models only train on and access trusted data, interact with authorized users and safe inputs, and prevent unintended exposure.

AI Endpoint Security Risks

Organizations seeking to balance innovation with security must implement strategic approaches that protect data throughout the AI lifecycle without impeding development.

Choosing an AI security solution: ‘DSPM for AI’ vs. AI-SPM

When evaluating security solutions for AI implementation, organizations typically consider two primary approaches:

  • Data security posture management (DSPM) for AI implements data-related AI security features while extending capabilities to encompass broader data governance requirements. ‘DSPM for AI’ focuses on securing data before it enters any AI pipeline and the identities that are exposed to it through Data Access Governance. It also evaluates the security posture of the AI in terms of data (e.g., a CoPilot with access to sensitive data, that has public access enabled).
  • AI security posture management (AI-SPM) focuses on securing the entire AI pipeline, encompassing models and MLOps workflows. AI-SPM features include AI training infrastructure posture (e.g., the configuration of the machine on which training runs) and AI endpoint security.

While both have merits, ‘DSPM for AI’ offers a more focused safety net earlier in the failure chain by protecting the very foundation on which AI operatesーdata. Its key functionalities include data discovery and classification, data access governance, real-time leakage and anomalous “data behavior” detection, and policy enforcement across both AI and non-AI environments.

Best Practices for AI Security Across Environments

AI security frameworks must protect various deployment environments—on-premise, cloud-based, and third-party AI services. Each environment presents unique security challenges that require specialized controls.

On-Premise AI Security

On-premise AI platforms handle proprietary or regulated data, making them attractive for sensitive use cases. However, they require stronger internal security measures to prevent insider threats and unauthorized access to model weights or training data that could expose business-critical information.

Best practices:

  • Encrypt AI data at multiple stages—training data, model weights, and inference data. This prevents exposure even if storage is compromised.
  • Set up role-based access control (RBAC) to ensure only authorized parties can gain access to or modify AI models.
  • Perform AI model integrity checks to detect any unauthorized modifications to training data or model parameters (protecting against data poisoning).

Cloud-Based AI Security

While home-grown cloud AI services offer enhanced abilities to leverage proprietary data, they also expand the threat landscape. Since AI services interact with multiple data sources and often rely on external integrations, they can lead to risks such as unauthorized access, API vulnerabilities, and potential data leakage.  

Best practices:

  • Follow a zero-trust security model that enforces continuous authentication for AI interactions, ensuring only verified entities can query or fine-tune models.
  • Monitor for suspicious activity via audit logs and endpoint threat detection to prevent data exfiltration attempts.
  • Establish robust data access governance (DAG) to track which users, applications, and AI models access what data.

Third-Party AI & API Security

Third-party AI models (like OpenAI's GPT, DeepSeek, or Anthropic's Claude) offer quick wins for various use cases. Unfortunately, they also introduce shadow AI and supply chain risks that must be managed due to a lack of visibility.

Best practices:

  • Restrict sensitive data input to third-party AI models using automated data classification tools.
  • Monitor external AI API interactions to detect if proprietary data is being unintentionally shared.
  • Implement AI-specific DSPM controls to ensure that third-party AI integrations comply with enterprise security policies.

Common AI implementation challenges arise when organizations attempt to maintain consistent security standards across these diverse environments. For enterprises navigating a complex AI adoption, a cloud-native DSPM solution with AI security controls offers a solid AI security strategy.

The Sentra platform is adaptable, consistent across environments, and compliant with frameworks like GDPR, CCPA, and industry-specific regulations.

Use Case: Securing GenAI at Scale with Sentra

Consider a marketing platform using generative AI to create branded content for multiple enterprise clients—a common scenario facing organizations today.

Challenges:

  • AI models processing proprietary brand data require robust enterprise data protection.
  • Prompt injections could potentially leak confidential company messaging.
  • Scalable security that doesn't impede creative workflows is a must. 

Sentra’s data-first security approach tackles these issues head-on via:

  • Data discovery & classification: Specialized AI models identify and safeguard sensitive information.
AI-powered Classification
Figure 1: A view of the specialized AI models that power data classification at Sentra
  • Data access governance (DAG): The platform tracks who accesses training and RAG data, and when, establishing accountability and controlling permissions at a granular level.  In addition, access to the AI agent (and its underlying information) is controlled and minimized.
  • Real-time leakage detection: Sentra’s best-of-breed data labeling engine feeds internal DLP mechanisms that are part of the AI agents (as well as external 3rd-party DLP and DDR tools).  In addition, Sentra monitors the interaction between the users and the AI agent, allowing for the detection of sensitive outputs, malicious inputs, or anomalous behavior.
  • Scalable endpoint threat detection: The solution protects API interactions from adversarial attacks, securing both proprietary and third-party AI services.
  • Automated security alerts: Sentra integrates with ServiceNow and Jira for rapid incident response, streamlining security operations.

The outcome: Sentra provides a scalable DSPM solution for AI that secures enterprise data while enabling AI-powered innovation, helping organizations address the complex challenges of enterprise AI adoption.

Takeaways

AI security starts at the data layer - without securing enterprise data, even the most sophisticated AI implementations remain vulnerable to attacks and data exposure. As organizations develop their data security strategies for AI, prioritizing data observability, governance, and protection creates the foundation for responsible innovation.

Sentra's DSPM provides cutting-edge AI security solutions at the scale required for enterprise adoption, helping organizations implement AI security best practices while maintaining compliance with evolving regulations.

Learn more about how Sentra has built a data security platform designed for the AI era.

<blogcta-big>

Yogev Wallach is a Physicist and Electrical Engineer with a strong background in ML and AI (in both research and development), and Product Leadership. Yogev is leading the development of Sentra's offerings for securing AI, as well as Sentra's use of AI for security purposes. He is also passionate about art and creativity, as a music producer and visual artist, as well as SCUBA diving and traveling.

Subscribe

Latest Blog Posts

Ward Balcerzak
Ward Balcerzak
December 17, 2025
3
Min Read

How CISOs Will Evaluate DSPM in 2026: 13 New Buying Criteria for Security Leaders

How CISOs Will Evaluate DSPM in 2026: 13 New Buying Criteria for Security Leaders

Data Security Posture Management (DSPM) has quickly become part of mainstream security, gaining ground on older solutions and newer categories like XDR and SSE. Beneath the hype, most security leaders share the same frustration: too many products promise results but simply can't deliver in the messy, large-scale settings that enterprises actually have. The DSPM market is expected to jump from $1.86B in 2024 to $22.5B by 2033, giving buyers more choice - and greater pressure - to demand what really sets a solution apart for the coming years.

Instead of letting vendors dictate the RFP, what if CISOs led the process themselves? Fast-forward to 2026 and the checklist a CISO uses to evaluate DSPM solutions barely resembles the checklists of the past. Here are the 12 criteria everyone should insist on - criteria most vendors would rather you ignore, but industry leaders like Sentra are happy to highlight.

Why Legacy DSPM Evaluation Fails Modern CISOs

Traditional DSPM/DCAP evaluations were all about ticking off feature boxes: Can it scan S3 buckets? Show file types? But most CISO I meet point to poor data visibility as their biggest vulnerability. It's already obvious that today’s fragmented, agent-heavy tools aren’t cutting it.

So, what’s changed for 2026? Massive data volumes, new unstructured formats like chat logs or AI training sets, and rapid cloud adoption mean security leaders now need a different class of protection.

The right platform:

  • Works without agents, everywhere you operate
  • Focuses on bringing real, risk-based context - not just adding more alerts
  • Automates compliance and fixes identity/data governance gaps
  • Manages both structured and unstructured data across the whole organization

Old evaluation checklists don’t come close. It’s time to update yours.

The 13 DSPM Buying Criteria Vendors Hope You Don’t Ask

Here’s what should be at the heart of every modern assessment, especially for 2026:

  1. Is the platform truly agentless, everywhere? Agent-based designs slow you down and block coverage. The best solutions set up in minutes, with absolutely no agents - across SaaS, IaaS, or on-premises and will always discover any unknown and shadow data
  1. Does it operate fully in-environment? Your data needs to stay in your cloud or region - not copied elsewhere for analysis. In-environment processing guards privacy, simplifies compliance, and matches global regulations (Cloud Security Alliance).
  1. Can it accurately classify unstructured data (>98% accuracy)? Most tools stumble outside of databases. Insist on AI-powered classification that understands language, context, and sensitivity. This covers everything from PDF files to Zoom recordings to LLM training data.
  1. How does it handle petabyte-scale scanning and will it  break the bank? Legacy options get expensive as data grows. You need tools that can scan quickly and stay cost-effective across multi-cloud and hybrid environments at massive scale.
  1. Does it unify data and identity governance? Very few platforms support both human and machine identities - especially for service accounts or access across clouds. Only end-to-end coverage breaks down barriers between IT, business, and security.
  1. Can it surface business-contextualized risk insights? You need more than technical vulnerability. Leading platforms map sensitive data by its business importance and risk, making it easier to prioritize and take action.
  1. Is deployment frictionless and multi-cloud native? DSPM should work natively in AWS, Azure, GCP, and SaaS, no complicated integrations required. Insist on fast, simple onboarding.
  1. Does it offer full remediation workflow automation? It’s not enough to raise the alarm. You want exposures fixed automatically, at scale, without manual effort.

  2. Does this fit within my Data Security Ecosystem? Choose only platforms that integrate and enrich your current data governance stack so every tool operates from the same source of truth without adding operational overhead. 
  1. Are compliance and security controls bridged in a unified dashboard? No more switching between tools. Choose platforms where compliance and risk data are combined into a single view for GRC and SecOps.
  1. Does it support business-driven data discovery (e.g., by project, region, or owner)? You need dynamic views tied to business needs, helping cloud initiatives move faster without adding risk, so security can become a business enabler.
  1. What’s the track record on customer outcomes at scale? Actual results in complex, high-volume settings matter more than demo promises. Look for real stories from large organizations.
  2. How is pricing structured for future growth? Beware of pricing that seems low until your data doubles. Look for clear, usage-based models so expansion won’t bring hidden costs.

Agentless, In-Environment Power: Why It’s the New Gold Standard

Agentless, in-environment architecture removes hassles with endpoint installs, connectors, and worries about where your data goes. Gartner has highlighted that this approach reduces regulatory headaches and enables fast onboarding. As organizations keep adding new cloud and hybrid systems, only these platforms can truly scale for global teams and strict requirements.

Sentra’s platform keeps all processing inside your environment. There’s no need to export your data; offering peace of mind for privacy, sovereignty, and speed. With regulations increasing everywhere, this approach isn’t just helpful; it’s essential.

Classification Accuracy and Petabyte-Scale Efficiency: The Must-Haves for 2026

Unstructured data is growing fast, and workloads are now more diverse than ever. The difference between basic scanning and real, AI-driven classification is often the difference between protecting your company or ending up on the breach list. Leading platforms, including Sentra, deliver over 95% classification accuracy by using large language models and in-house methods across both structured and unstructured data.

Why is speed and scale so important? Old-school solutions were built with smaller data volumes in mind. Today, DSPM platforms must quickly and affordably identify and secure data in vast environments. Sentra’s scanning is both fast and affordable, keeping up as your data grows. To learn more about these challenges read: Reducing Cloud Data Attack Risk.

Don’t Settle: Redefining Best-in-Class DSPM Buying Criteria for 2026

Many vendors are still only comfortable offering the basics, but the demands facing CISOs today are anything but basic. Combining identity and data governance, multi-cloud support that works out of the box, and risk insights mapped to real business needs - these are the essential elements for protecting today’s and tomorrow’s data. If a solution doesn’t check all 12 boxes, you’re already limiting your security program before you start.

Need a side-by-side comparison for your next decision?  Request a personalized demo to see exactly how Sentra meets every requirement.

Conclusion

With AI further accelerating data growth, security teams can’t afford to settle for legacy features or generic checklists. By insisting on meaningful criteria - true agentless design, in-environment processing, precise AI-driven classification, scalable affordability, and business-first integration - CISOs set a higher standard for both their own organizations and the wider industry.

Sentra is ready to help you raise the bar. Contact us for a data risk assessment, or to discuss how to ensure your next buying decision leads to better protection, less risk, and a stronger position for the future.

Continue the Conversation

If you want to go deeper into how CISOs are rethinking data security, I explore these topics regularly on Guardians of the Data, a podcast focused on real-world data protection challenges, evolving DSPM strategies, and candid conversations with security leaders.

Watch or listen to Guardians of the Data for practical insights on securing data in an AI-driven, multi-cloud world.

<blogcta-big>

Read More
Nikki Ralston
Nikki Ralston
Romi Minin
Romi Minin
December 16, 2025
3
Min Read

Sentra Is One of the Hottest Cybersecurity Startups

Sentra Is One of the Hottest Cybersecurity Startups

We knew we were on a hot streak, and now it’s official.

Sentra has been named one of CRN’s 10 Hottest Cybersecurity Startups of 2025. This recognition is a direct reflection of our commitment to redefining data security for the cloud and AI era, and of the growing trust forward-thinking enterprises are placing in our unique approach.

This milestone is more than just an award. It shows our relentless drive to protect modern data systems and gives us a chance to thank our customers, partners, and the Sentra team whose creativity and determination keep pushing us ahead.

The Market Forces Fueling Sentra’s Momentum

Cybersecurity is undergoing major changes. With 94% of organizations worldwide now relying on cloud technologies, the rapid growth of cloud-based data and the rise of AI agents have made security both more urgent and more complicated. These shifts are creating demands for platforms that combine unified data security posture management (DSPM) with fast data detection and response (DDR).

Industry data highlights this trend: over 73% of enterprise security operations centers are now using AI for real-time threat detection, leading to a 41% drop in breach containment time. The global cybersecurity market is growing rapidly, estimated to reach $227.6 billion in 2025, fueled by the need to break down barriers between data discovery, classification, and incident response 2025 cybersecurity market insights. In 2025, organizations will spend about 10% more on cyber defenses, which will only increase the demand for new solutions.

Why Recognition by CRN Matters and What It Means

Landing a place on CRN’s 10 Hottest Cybersecurity Startups of 2025 is more than publicity for Sentra. It signals we truly meet the moment. Our rise isn’t just about new features; it’s about helping security teams tackle the growing risks posed by AI and cloud data head-on. This recognition follows our mention as a CRN 2024 Stellar Startup, a sign of steady innovation and mounting interest from analysts and enterprises alike.

Being on CRN’s list means customers, partners, and investors value Sentra’s straightforward, agentless data protection that helps organizations work faster and with more certainty.

Innovation Where It Matters: Sentra’s Edge in Data and AI Security

Sentra stands out for its practical approach to solving urgent security problems, including:

  • Agentless, multi-cloud coverage: Sentra identifies and classifies sensitive data and AI agents across cloud, SaaS, and on-premises environments without any agents or hidden gaps.
  • Integrated DSPM + DDR: We go further than monitoring posture by automatically investigating incidents and responding, so security teams can act quickly on why DSPM+DDR matters.
  • AI-driven advancements: Features like domain-specific AI Classifiers for Unstructure advanced AI classification leveraging SLMs, Data Security for AI Agents and Microsoft M365 Copilot help customers stay in control as they adopt new technologies Sentra’s AI-powered innovation.

With new attack surfaces popping up all the time, from prompt injection to autonomous agent drift, Sentra’s architecture is built to handle the world of AI.

A Platform Approach That Outpaces the Competition

There are plenty of startups aiming to tackle AI, cloud, and data security challenges. Companies like 7AI, Reco, Exaforce, and Noma Security have been in the news for their funding rounds and targeted solutions. Still, very few offer the kind of unified coverage that sets Sentra apart.

Most competitors stick to either monitoring SaaS agents or reducing SOC alerts. Sentra does more by providing both agentless multi-cloud DSPM and built-in DDR. This gives organizations visibility, context, and the power to act in one platform. With features like Data Security for AI Agents, Sentra helps enterprises go beyond managing alerts by automating meaningful steps to defend sensitive data everywhere.

Thanks to Our Community and What’s Next

This honor belongs first and foremost to our community: customers breaking new ground in data security, partners building solutions alongside us, and a team with a clear goal to lead the industry.

If you haven’t tried Sentra yet, now’s a great time to see what we can do for your cloud and AI data security program. Find out why we’re at the forefront: schedule a personalized demo or read CRN’s full 2025 list for more insight.

Conclusion

Being named one of CRN’s hottest cybersecurity startups isn’t just a milestone. It pushes us forward toward our vision - data security that truly enables innovation. The market is changing fast, but Sentra’s focus on meaningful security results hasn't wavered.

Thank you to our customers, partners, investors, and team for your ongoing trust and teamwork. As AI and cloud technology shape the future, Sentra is ready to help organizations move confidently, securely, and quickly.

Read More
Meni Besso
Meni Besso
December 15, 2025
3
Min Read

AI Governance Starts With Data Governance: Securing the Training Data and Agents Fuelling GenAI

AI Governance Starts With Data Governance: Securing the Training Data and Agents Fuelling GenAI

Generative AI isn’t just transforming products and processes - it’s expanding the entire enterprise risk surface. As C-suite executives and security leaders rush to unlock GenAI’s competitive advantages, a hard truth is clear: effective AI governance depends on solid, end-to-end data governance.

Sensitive data is increasingly used for model training and autonomous agents. If organizations fail to discover, classify, and secure these resources early, they risk privacy breaches, regulatory violations, and reputational damage. To make GenAI safe, compliant, and trustworthy from the start, data governance for generative AI needs to be a top boardroom priority.

Why Data Governance is the Cornerstone of GenAI Trustworthiness and Safety

The opportunities and risks of generative AI depend not only on algorithms, but also on the quality, security, and history of the underlying data. AWS reports that 39% of Chief Data Officers see data cleaning, integration, and storage as the main barriers to GenAI adoption, and 49% of enterprises make data quality improvement a core focus for successful AI projects (AWS Enterprise Strategy - Data Governance). Without strong data governance, sensitive information can end up in training sets, leading to unintentional leaks or model behaviors that break privacy and compliance.

Regulatory requirements, such as the Generative AI Copyright Disclosure Act, are evolving fast, raising the pressure to document data lineage and make sure unauthorized or non-compliant datasets stay out. In the world of GenAI, governance goes far beyond compliance checklists. It’s essential for building AI that is safe, auditable, and trusted by both regulators and customers.

New Attack Surfaces: Risks From Unsecured Data and Shadow AI Agents

GenAI adoption increases risk. Today, 79% of organizations have already piloted or deployed agentic AI, with many using LLM-powered agents to automate key workflows (Wikipedia - Agentic AI). But if these agents, sometimes functioning as "shadow AI" outside official oversight, access sensitive or unclassified data, the fallout can be severe.

In 2024, over 30% of AI data breaches involve insider threats or accidental disclosure, according to Quinnox Data Governance for AI. Autonomous agents can mistakenly reveal trade secrets, financial records, or customer data, damaging brand trust. The risk multiplies rapidly if sensitive data isn’t properly governed before flowing into GenAI tools. To stop these new threats, organizations need up-to-the-minute insight and control over both data and the agents using it.

Frameworks and Best Practices for Data Governance in GenAI

Leading organizations now follow data governance frameworks that match changing regulations and GenAI's technical complexity. Standards like NIST AI Risk Management Framework (AI RMF) and ISO/IEC 42001:2023 are setting the benchmarks for building auditable, resilient AI programs (Data and AI Governance - Frameworks & Best Practices).

Some of the most effective practices:

  • Managing metadata and tracking full data lineage
  • Using data access policies based on role and context
  • Automating compliance with new AI laws
  • Monitoring data integrity and checking for bias

A strong data governance program for generative AI focuses on ongoing data discovery, classification, and policy enforcement - before data or agents meet any AI models. This approach helps lower risk and gives GenAI efforts a solid base of trust.

Sentra’s Approach: Proactive Pre-Integration Discovery and Continuous Enforcement

Many tools only secure data after it’s already being used with GenAI applications. This reactive strategy leaves openings for risk. Sentra takes a different path, letting organizations discover, classify, and protect sensitive data sources before they interact with language models or agentic AI.

By using agentless, API-based discovery and classification across multi-cloud and SaaS environments, Sentra delivers immediate visibility and context-aware risk scoring for all enterprise data assets. With automated policies, businesses can mask, encrypt, or restrict data access depending on sensitivity, business requirements, or audit needs. Live Continuous monitoring tracks which AI agents are accessing data, making granular controls and fast intervention possible. These processes help stop shadow AI, keep unauthorized data out of LLM training, and maintain compliance as rules and business needs shift.

Guardrails for Responsible AI Growth Across the Enterprise

The future of GenAI depends on how well businesses can innovate while keeping security and compliance intact. As AI regulations become stricter and adoption speeds up, Sentra’s ability to provide ongoing, automated discovery and enforcement at scale is critical. Further reading: AI Automation & Data Security: What You Need To Know.

With Sentra, organizations can:

  • Stop unapproved or unchecked data from being used in model training
  • Identify shadow AI agents or risky automated actions as they happen
  • Support audits with complete data classification
  • Meet NIST, ISO, and new global standards with ease

Sentra gives CISOs, CDOs, and executives a proactive, scalable way to adopt GenAI safely, protecting the business before any model training even begins.

AI Governance Starts with Data Governance

AI governance for generative AI starts, and is won or lost, at the data layer. If organizations don’t find, classify, and secure sensitive data first, every other security measure remains reactive and ineffective. As generative AI, agent automation, and regulatory demands rise, a unified data governance strategy isn’t just good practice, it’s an urgent priority. Sentra gives security and business teams real control, making sure GenAI is secure, compliant, and trusted.

<blogcta-big>

Read More
decorative ball
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security. Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!

Before you go...

Get the Gartner Customers' Choice for DSPM Report

Read why 98% of users recommend Sentra.

Gartner Certificate for Sentra