Sentra Launches Breakthrough AI Classification Capabilities!
All Resources
In this article:
minus iconplus icon
Share the Blog

New AI-Assistant, Sentra Jagger, Is a Game Changer for DSPM and DDR

March 5, 2024
3
Min Read
AI and ML

Evolution of Large Language Models (LLMs)

In the early 2000s, as Google, Yahoo, and others gained widespread popularity. Users found the search engine to be a convenient tool, effortlessly bringing a wealth of information to their fingertips. Fast forward to the 2020s, and we see Large Language Models (LLMs) are pushing productivity to the next level. LLMs skip the stage of learning, seamlessly bridging the gap between technology and the user.

LLMs create a natural interface between the user and the platform. By interpreting natural language queries, they effortlessly translate human requests into software actions and technical operations. This simplifies technology to make it close to invisible. Users no longer need to understand the technology itself, or how to get certain data — they can just input any query, and LLMs will simplify it.

Revolutionizing Cloud Data Security With Sentra Jagger

Sentra Jagger is an industry-first AI assistant for cloud data security based on the Large Language Model (LLM).

It enables users to quickly analyze and respond to security threats, cutting task times by up to 80% by answering data security questions, including policy customization and enforcement, customizing settings, creating new data classifiers, and reports for compliance. By reducing the time for investigating and addressing security threats, Sentra Jagger enhances operational efficiency and reinforces security measures.

Empowering security teams, users can access insights and recommendations on specific security actions using an interactive, user-friendly interface. Customizable dashboards, tailored to user roles and preferences, enhance visibility into an organization's data. Users can directly inquire about findings, eliminating the need to navigate through complicated portals or ancillary information.

Benefits of Sentra Jagger

  1. Accessible Security Insights: Simplified interpretation of complex security queries, offering clear and concise explanations in plain language to empower users across different levels of expertise. This helps users make informed decisions swiftly, and confidently take appropriate actions.
  1. Enhanced Incident Response: Clear steps to identify and fix issues, offering users clear steps to identify and fix issues, making the process faster and minimizing downtime, damage, and restoring normal operations promptly. 
  1. Unified Security Management: Integration with existing tools, creating a unified security management experience and providing a complete view of the organization's data security posture. Jagger also speeds solution customization and tuning.

Why Sentra Jagger Is Changing the Game for DSPM and DDR

Sentra Jagger is an essential tool for simplifying the complexities of both Data Security Posture Management (DSPM) and Data Detection and Response (DDR) functions. DSPM discovers and accurately classifies your sensitive data anywhere in the cloud environment, understands who can access this data, and continuously assesses its vulnerability to security threats and risk of regulatory non-compliance. DDR focuses on swiftly identifying and responding to security incidents and emerging threats, ensuring that the organization’s data remains secure. With their ability to interpret natural language, LLMs, such as Sentra Jagger, serve as transformative agents in bridging the comprehension gap between cybersecurity professionals and the intricate worlds of DSPM and DDR.

Data Security Posture Management (DSPM)

When it comes to data security posture management (DSPM), Sentra Jagger empowers users to articulate security-related queries in plain language, seeking insights into cybersecurity strategies, vulnerability assessments, and proactive threat management.

Meet Sentra Jagger, your new data security assistant

The language models not only comprehend the linguistic nuances but also translate these queries into actionable insights, making data security more accessible to a broader audience. This democratization of security knowledge is a pivotal step forward, enabling organizations to empower diverse teams (including privacy, governance, and compliance roles) to actively engage in bolstering their data security posture without requiring specialized cybersecurity training.

Data Detection and Response (DDR)

In the realm of data detection and response (DDR), Sentra Jagger contributes to breaking down technical barriers by allowing users to interact with the platform to seek information on DDR configurations, real-time threat detection, and response strategies. Our AI-powered assistant transforms DDR-related technical discussions into accessible conversations, empowering users to understand and implement effective threat protection measures without grappling with the intricacies of data detection and response technologies.

The integration of LLMs into the realms of DSPM and DDR marks a paradigm shift in how users will interact with and comprehend complex cybersecurity concepts. Their role as facilitators of knowledge dissemination removes traditional barriers, fostering widespread engagement with advanced security practices. 

Sentra Jagger is a game changer by making advanced technological knowledge more inclusive, allowing organizations and individuals to fortify their cybersecurity practices with unprecedented ease. It helps security teams better communicate with and integrate within the rest of the business. As AI-powered assistants continue to evolve, so will their impact to reshape the accessibility and comprehension of intricate technological domains.

How CISOs Can Leverage Sentra Jagger 

Consider a Chief Information Security Officer (CISO) in charge of cybersecurity at a healthcare company. To assess the security policies governing sensitive data in their environment, the CISO leverages Sentra’s Jagger AI assistant.. If the CISO, let's call her Sara, needs to navigate through the Sentra policy page, instead of manually navigating, Sara can simply queryJagger, asking, "What policies are defined in my environment?" In response, Jagger provides a comprehensive list of policies, including their names, descriptions, active issues, creation dates, and status (enabled or disabled).

Sara can then add a custom policy related to GDPR, by simply describing it. For example, "add a policy that tracks European customer information moving outside of Europe". Sentra Jagger will translate the request using Natural Language Processing (NLP) into a Sentra policy and inform Sara about potential non-compliant data movement based on the recently added policy.

Upon thorough review, Sara identifies a need for a new policy: "Create a policy that monitors instances where credit card information is discovered in a datastore without audit logs enabled." Sentra Jagger initiates the process of adding this policy by prompting Sara for additional details and confirmation. 

The LLM-assistant, Sentra Jagger, communicates, "Hi Sara, it seems like a valuable policy to add. Credit card information should never be stored in a datastore without audit logs enabled. To ensure the policy aligns with your requirements, I need more information. Can you specify the severity of alerts you want to raise and any compliance standards associated with this policy?" Sara responds, stating, "I want alerts to be raised as high severity, and I want the AWS CIS benchmark to be associated with it."

Having captured all the necessary information, Sentra Jagger compiles a summary of the proposed policy and sends it to Sara for her review and confirmation. After Sara confirms the details, the LLM-assistant, Sentra Jagger seamlessly incorporates the new policy into the system. This streamlined interaction with LLMs enhances the efficiency of policy management for CISOs, enabling them to easily navigate, customize, and implement security measures in their organizations.

Create a policy with Sentra Jagger
Creating a policy with Sentra Jagger

Conclusion 

The advent of Large Language Models (LLMs) has changed the way we interact with and understand technology. Building on the legacy of search engines, LLMs eliminate the learning curve, seamlessly translating natural language queries into software and technical actions. This innovation removes friction between users and technology, making intricate systems nearly invisible to the end user.

For Chief Information Security Officers (CISOs) and ITSecOps, LLMs offer a game-changing approach to cybersecurity. By interpreting natural language queries, Sentra Jagger bridges the comprehension gap between cybersecurity professionals and the intricate worlds of DSPM and DDR. This standardization of security knowledge allows organizations to empower a wider audience to actively engage in bolstering their data security posture and responding to security incidents, revolutionizing the cybersecurity landscape.

To learn more about Sentra, schedule a demo with one of our experts.

Discover Ron’s expertise, shaped by over 20 years of hands-on tech and leadership experience in cybersecurity, cloud, big data, and machine learning. As a serial entrepreneur and seed investor, Ron has contributed to the success of several startups, including Axonius, Firefly, Guardio, Talon Cyber Security, and Lightricks, after founding a company acquired by Oracle.

Subscribe

Latest Blog Posts

Yair Cohen
Yair Cohen
December 28, 2025
3
Min Read

What CISOs Learned in 2025: The 5 Data Security Priorities Coming in 2026

What CISOs Learned in 2025: The 5 Data Security Priorities Coming in 2026

2025 was a pivotal year for Chief Information Security Officers (CISOs). As cyber threats surged and digital acceleration transformed business, CISOs gained more influence in boardrooms but also took on greater accountability. The old model of perimeter-based defense has ended. Security strategies now focus on resilience and real-time visibility with sensitive data protection at the core.

As 2026 approaches, CISOs are turning this year’s lessons into a proactive, AI-smart, and business-aligned strategy. This article highlights the top CISO priorities for 2026, the industry’s shift from prevention to resilience, and how Sentra supports security leaders in this new phase.

Lessons from 2025: Transparency, AI Risk, and Platform Resilience

Over the past year, CISOs encountered high-profile breaches and shifting demands. According to the Splunk 2025 CISO Report an impressive 82% reported direct interactions with CEOs, and 83% regularly attended board meetings. Still, only 29% of board members had cybersecurity experience, leading to frequent misalignment around budgets, innovation, and staffing.

The data is clear: 76% of CISOs expected a significant cyberattack, but 58% felt unprepared, as reported in the Proofpoint 2025 Voice of the CISO Report. Many CISOs struggled with overwhelming tool sprawl and alert fatigue, 76% named these as major challenges. The rapid growth in cloud, SaaS, and GenAI environments left major visibility gaps, especially for unstructured and shadow data. Most of all, CISOs concluded that resilience - quick detection, rapid response, and keeping the business running, matters more than just preventing attacks. This shift is changing the way security budgets will be spent in 2026.

The Evolution of DSPM: From Inventory to Intelligent, AI-Aware Defense

First generation data security posture management (DSPM) tools focused on identifying assets and manually classifying data. Now, CISOs must automatically map, classify, and assign risk scores to data - structured, unstructured, or AI-generated - across cloud, on-prem and SaaS environments, instantly. If organizations lack this capability, critical data remains at risk (Data as the Core Focus in the Cloud Security Ecosystem).

AI brings both opportunity and risk. CISOs are working to introduce GenAI security policies while facing challenges like data leakage, unsanctioned AI projects, and compliance issues. DSPM solutions that use machine learning and real-time policy enforcement have become essential.

The Top Five CISO Priorities in 2026

  1. Secure and Responsible AI: As AI accelerates across the business, CISOs must ensure it does not introduce unmanaged data risk. The focus will be on maintaining visibility and control over sensitive data used by AI systems, preventing unintended exposure, and establishing governance that allows the company to innovate with AI while protecting trust, compliance, and brand reputation.
  1. Modern Data Governance: As sensitive data sprawls across on-prem, cloud, SaaS, and data lakes, CISOs face mounting compliance pressure without clear visibility into where that data resides. The priority will be establishing accurate classification and governance of sensitive, unstructured, and shadow data - not only to meet regulatory obligations, but to proactively reduce enterprise risk, limit blast radius, and strengthen overall security posture.

  2. Tool Consolidation: As cloud and application environments grow more complex, CISOs are under pressure to reduce data sprawl without increasing risk. The priority is consolidating fragmented cloud and application security tools into unified platforms that embed protection earlier in the development lifecycle, improve risk visibility across environments, and lower operational overhead. For boards, this shift represents both stronger security outcomes and a clearer return on security investment through reduced complexity, cost, and exposure.
  1. Offensive Security/Continuous Testing: One-time security assessments can no longer keep pace with AI-driven and rapidly evolving threats. CISOs are making continuous offensive security a core risk-management practice, regularly testing environments across hardware, cloud, and SaaS to expose real-world vulnerabilities. For the board, this provides ongoing validation of security effectiveness and reduces the likelihood of unpleasant surprises from unknown exposures. Some exciting new AI red team solutions are appearing on the scene such as 7ai, Mend.io, Method Security, and Veria Labs.
  1. Zero Trust Identity Governance: Identity has become the primary attack surface, making advanced governance essential rather than optional. CISOs are prioritizing data-centric, Zero Trust identity controls to limit excessive access, reduce insider risk, and counter AI-enabled attacks. At the board level, this shift is critical to protecting sensitive assets and maintaining resilience against emerging threats.

These areas show a greater need for automation, better context, and clearer reporting for boards.

Sentra Enables Secure and Responsible AI with Modern Data Governance

As AI becomes central to business strategy, CISOs are being held accountable for ensuring innovation does not outpace security, governance, or trust. Secure and Responsible AI is no longer about policy alone, it requires continuous visibility into the sensitive data flowing into AI systems, control over shadow and AI-generated data, and the ability to prevent unintended exposure before it becomes a business risk.

At the same time, Modern Data Governance has emerged as a foundational requirement. Exploding data volumes across cloud, SaaS, data lakes, and on-prem environments have made traditional governance models ineffective. CISOs need accurate classification, unified visibility, and enforceable controls that go beyond regulatory checkboxes to actively reduce enterprise risk.

Sentra brings these priorities together by giving security leaders a clear, real-time understanding of where sensitive data lives, how it is being used - including by AI - and where risk is accumulating across the organization. By unifying DSPM and Data Detection & Response (DDR), Sentra enables CISOs to move from reactive security to proactive governance, supporting AI adoption while maintaining compliance, resilience, and board-level confidence.

Looking ahead to 2026, the CISOs who lead will be those who can see, govern, and secure their data everywhere it exists and ensure it is used responsibly to power the next phase of growth. Sentra provides the foundation to make that possible.

Conclusion

The CISO’s role in 2025 shifted from putting out fires to driving change alongside business leadership. Expectations will keep rising in 2026; balancing board expectations, the opportunities and threats of AI, and constant new risks takes a smart platform and real-time clarity.

Sentra delivers the foundation and intelligence CISOs need to build resilience, stay compliant, and fuel data-powered AI growth with secure data. Those who can see, secure, and respond wherever their data lives will lead. Sentra is your partner to move forward with confidence in 2026.

<blogcta-big>

Read More
Meni Besso
Meni Besso
December 23, 2025
Min Read
Compliance

How to Scale DSAR Compliance (Without Breaking Your Team)

How to Scale DSAR Compliance (Without Breaking Your Team)

Data Subject Access Requests (DSARs) are one of the most demanding requirements under privacy regulations such as GDPR and CPRA. As personal data spreads across cloud, SaaS, and legacy systems, responding to DSARs manually becomes slow, costly, and error-prone. This article explores why DSARs are so difficult to scale, the key challenges organizations face, and how DSAR automation enables faster, more reliable compliance.

Privacy regulations are no longer just legal checkboxes, they are a foundation of customer trust. In today’s data-driven world, individuals expect transparency into how their personal information is collected, used, and protected. Organizations that take privacy seriously demonstrate respect for their users, strengthening trust, loyalty, and long-term engagement.

Among these requirements, DSARs are often the most complex to support. They give individuals the right to request access to their personal data, typically with a strict response deadline of 30 days. For large enterprises with data scattered across cloud, SaaS, and on-prem environments, even a single request can trigger a frantic search across multiple systems, manual reviews, and legal oversight - quickly turning DSAR compliance into a race against the clock, with reputation and regulatory risk on the line.

What Is a Data Subject Access Request (DSAR)?

A Data Subject Access Request (DSAR) is a legal right granted under privacy regulations such as GDPR and CPRA that allows individuals to request access to the personal data an organization holds about them. In many cases, individuals can also request information about how that data is used, shared, or deleted.

Organizations are typically required to respond to DSARs within a strict timeframe, often 30 days, and must provide a complete and accurate view of the individual’s personal data. This includes data stored in databases, files, logs, SaaS platforms, and other systems across the organization.

Why DSAR Requests Are Difficult to Manage at Scale

DSARs are relatively manageable for small organizations with limited systems. At enterprise scale, however, they become significantly more complex. Personal data is no longer centralized. It is distributed across cloud platforms, SaaS applications, data lakes, file systems, and legacy infrastructure. Privacy teams must coordinate with IT, security, legal, and data owners to locate, review, and validate data before responding. As DSAR volumes increase, manual processes quickly break down, increasing the risk of delays, incomplete responses, and regulatory exposure.

Key Challenges in Responding to DSARs

Data Discovery & Inventory

For large organizations, pinpointing where personal data resides across a diverse ecosystem of information systems, including databases, SaaS applications, data lakes, and legacy environments, is a complex challenge. The presence of fragmented IT infrastructure and third-party platforms often leads to limited visibility, which not only slows down the DSAR response process but also increases the likelihood of missing or overlooking critical personal data.

Linking Identities Across Systems

A single individual may appear in multiple systems under different identifiers, especially if systems have been acquired or integrated over time. Accurately correlating these identities to compile a complete DSAR response requires sophisticated identity resolution and often manual effort.


Unstructured Data Handling

Unlike structured databases, where data is organized into labeled fields and can be efficiently queried, unstructured data (like PDFs, documents, and logs) is free-form and lacks consistent formatting. This makes it much harder to search, classify, or extract relevant personal information.

Response Timeliness

Regulatory deadlines force organizations to respond quickly, even when data must be gathered from multiple sources and reviewed by legal teams. Manual processes can lead to delays, risking non-compliance and fines.

Volume & Scalability

While most organizations can handle an occasional DSAR manually, spikes in request volume - driven by events like regulatory campaigns or publicized incidents - can overwhelm privacy and legal teams. Without scalable automation, organizations face mounting operational costs, missed deadlines, and an increased risk of inconsistent or incomplete responses.


The Role of Data Security Platforms in DSAR Automation

Sentra is a modern data security platform dedicated to helping organizations gain complete visibility and control over their sensitive data. By continuously scanning and classifying data across all environments (including cloud, SaaS, and on-premises systems) Sentra maintains an always up-to-date data map, giving organizations a clear understanding of where sensitive data resides, how it flows, and who has access to it. This data map forms the foundation for efficient DSAR automation, enabling Sentra’s DSAR module to search for user identifiers only in locations where relevant data actually exists - ensuring high accuracy, completeness, and fast response times.

Data Security Platform example of US SSN finding

Another key factor in managing DSAR requests is ensuring that sensitive customer PII doesn’t end up in unauthorized or unintended environments. When data is copied between systems or environments, it’s essential to apply tokenization or masking to prevent unintentional sprawl of PII. Sentra helps identify misplaced or duplicated sensitive data and alerts when it isn’t properly protected. This allows organizations to focus DSAR processing within authorized operational environments, significantly reducing both risk and response time.

Smart Search of Individual Data

To initiate the generation of a Data Subject Access Request (DSAR) report, users can submit one or more unique identifiers—such as email addresses, Social Security numbers, usernames, or other personal identifiers—corresponding to the individual in question. Sentra then performs a targeted scan across the organization’s data ecosystem, focusing on data stores known to contain personally identifiable information (PII). This includes production databases, data lakes, cloud storage services, file servers, and both structured and unstructured data sources.

Leveraging its advanced classification and correlation capabilities, Sentra identifies all relevant records associated with the provided identifiers. Once the scan is complete, it compiles a comprehensive DSAR report that consolidates all discovered personal data linked to the data subject that can be downloaded as a PDF for manual review or securely retrieved via Sentra’s API.

DSAR Requests

Establishing a DSAR Processing Pipeline

Large organizations that receive a high volume of DSAR (Data Subject Access Request) submissions typically implement a robust, end-to-end DSAR processing pipeline. This pipeline is often initiated through a self-service privacy portal, allowing individuals to easily submit requests for access or deletion of their personal data. Once a request is received, an automated or semi-automated workflow is triggered to handle the request efficiently and in compliance with regulatory timelines.

  1. Requester Identity Verification: Confirm the identity of the data subject to prevent unauthorized access (e.g., via email confirmation or secure login).

  2. Mapping Identifiers: Collect and map all known identifiers for the individual across systems (e.g., email, user ID, customer number).

  3. Environment-Wide Data Discovery (via Sentra): Use Sentra to search all relevant environments — cloud, SaaS, on-prem — for personal data tied to the individual. By using Sentra’s automated discovery and classification, Sentra can automatically identify where to search for.

  4. DSAR Report Generation (via Sentra): Compile a detailed report listing all personal data found and where it resides.

  5. Data Deletion & Verification: Remove or anonymize personal data as required, then rerun a search to verify deletion is complete.

  6. Final Response to Requester: Send a confirmation to the requester, outlining the actions taken and closing the request.

Sentra plays a key role in the DSAR pipeline by exposing a powerful API that enables automated, organization-wide searches for personal data. The search results can be programmatically used to trigger downstream actions like data deletion. After removal, the API can initiate a follow-up scan to verify that all data has been successfully deleted.

Benefits of DSAR Automation 

With privacy regulations constantly growing, and DSAR volumes continuing to rise, building an automated, scalable pipeline is no longer a luxury - it’s a necessity.


  • Automated and Cost-Efficient: Replaces costly, error-prone manual processes with a streamlined, automated approach.
  • High-Speed, High-Accuracy: Sentra leverages its knowledge of where PII resides to perform targeted searches across all environments and data types, delivering comprehensive reports in hours—not days.
  • Seamless Integration: A powerful API allows integration with workflow systems, enabling a fully automated, end-to-end DSAR experience for end users.

By using Sentra to intelligently locate PII across all environments, organizations can eliminate manual bottlenecks and accelerate response times. Sentra’s powerful API and deep data awareness make it possible to automate every step of the DSAR journey - from discovery to deletion - enabling privacy teams to operate at scale, reduce costs, and maintain compliance with confidence. 

Turning DSAR Compliance into a Scalable Advantage with Automation

As privacy expectations grow and regulatory pressure intensifies, DSARs are no longer just a compliance checkbox, they are a reflection of how seriously an organization treats user trust. Manual, reactive processes simply cannot keep up with the scale and complexity of modern data environments, especially as personal data continues to spread across cloud, SaaS, and on-prem systems.

By automating DSAR workflows with a data-centric security platform like Sentra, organizations can respond faster, reduce compliance risk, and lower operational costs - all while freeing privacy and legal teams to focus on higher-value initiatives. In this way, DSAR compliance becomes not just a regulatory obligation, but a measure of operational maturity and a scalable advantage in building long-term trust.

<blogcta-big>

Read More
Dean Taler
Dean Taler
December 22, 2025
3
Min Read

Building Automated Data Security Policies for 2026: What Security Teams Need Now

Building Automated Data Security Policies for 2026: What Security Teams Need Now

Learn how to build automated data security policies that reduce data exposure, meet GDPR, PCI DSS, and HIPAA requirements, and scale data governance across cloud, SaaS, and AI-driven environments as organizations move into 2026.

As 2025 comes to a close, one reality is clear: automated data security and governance programs are a must-have to truly leverage data and AI. Sensitive data now moves faster than human review can keep up with. It flows across multi-cloud storage, SaaS platforms, collaboration tools, logging pipelines, backups, and increasingly, AI and analytics workflows that continuously replicate data into new locations. For security and compliance teams heading into 2026, periodic audits and static policies are no longer sufficient. Regulators, customers, and boards now expect continuous visibility and enforcement.

This is why automated data security policies have become a foundational control, not a “nice to have.”

In this blog, we focus on how data security policies are actually used at the end of 2025, and how to design them so they remain effective in 2026.

You’ll learn:

  • The most important compliance and risk-driven policy use cases
  • How organizations operationalize data security policies at scale
  • Practical examples aligned with GDPR, PCI DSS, HIPAA, and internal governance

Why Automated Data Security Policies Matter Heading into 2026

The direction of regulatory enforcement and threat activity is consistent:

  • Continuous compliance is now expected, not implied
  • Overexposed data is increasingly used for extortion, not just theft
  • Organizations must prove they know where sensitive data lives and who can access it

Recent enforcement actions have shown that organizations can face penalties even without a breach, simply for storing regulated data in unapproved locations or failing to enforce access controls consistently.

Automated data security policies address this gap by continuously evaluating:

  • Data sensitivity
  • Access scope
  • Storage location and residency
  • surfacing violations in near real time.

Three Data Security Policy Use Cases That Deliver Immediate Value

As organizations prepare for 2026, most start with policies that reduce data  exposure quickly.

1. Limiting Data Exposure and Ransomware Impact

Misconfigured access and excessive sharing remain the most common causes of data exposure. In cloud and SaaS environments, these issues often emerge gradually, and go unnoticed without automation.

High-impact policies include:

  • Sensitive data shared with external users: Detect files containing credentials, PII, or financial data that are accessible to outside collaborators.
  • Overly broad internal access to sensitive data: Identify data shared with “Anyone in the organization,” significantly increasing exposure during account compromise.

These policies reduce blast radius and help prevent data from becoming leverage in extortion-based attacks.

2. Enforcing Secure Data Storage and Handling (PCI DSS, HIPAA, SOC 2)

Compliance violations in 2025 rarely result from intentional misuse. They happen because sensitive data quietly appears in the wrong systems.

Common policy findings include:

  • Payment card data in application logs or monitoring tools: A persistent PCI DSS issue, especially in modern microservice environments.
  • Employee or patient records stored in collaboration platforms: PII and PHI often end up in user-managed drives without appropriate safeguards.

Automated policies continuously detect these conditions and support fast remediation, reducing audit findings and operational risk.

3. Maintaining Data Residency and Sovereignty Compliance

As global data protection enforcement intensifies, data residency violations remain one of the most common and costly compliance failures.

Automated policies help identify:

  • EU personal data stored outside approved EU regions: A direct GDPR violation that is common in multi-cloud and SaaS environments.
  • Cross-region replicas and backups containing regulated data: Secondary storage locations frequently fall outside compliance controls.

These policies enable organizations to demonstrate ongoing compliance, not just point-in-time alignment.

What Modern Data Security Policies Must Do (2026-Ready)

As teams move into 2026, effective data security policies share three traits:

  1. They are data-aware: Policies are based on data sensitivity - not just resource labels or storage locations.
  2. They operate continuously: Policies evaluate changes as data is created, moved, shared, or copied into new systems.
  3. They drive action: Every violation maps to a remediation path: restrict access, move data, or delete it.

This is what allows security teams to scale governance without slowing the business.

Conclusion: From Static Rules to Continuous Data Governance

Heading into 2026, automated data security policies are no longer just compliance tooling, they are a core layer of modern security architecture.

They allow organizations to:

  • Reduce exposure and ransomware risk
  • Enforce regulatory requirements continuously
  • Govern sensitive data across cloud, SaaS, and AI workflows

Most importantly, they replace reactive audits with real-time data governance.

Organizations that invest in automated, data-aware security policies today will enter 2026 better prepared for regulatory scrutiny, evolving threats, and the continued growth of their data footprint.

<blogcta-big>

Read More
decorative ball
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security. Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!

Before you go...

Get the Gartner Customers' Choice for DSPM Report

Read why 98% of users recommend Sentra.

Gartner Certificate for Sentra