All Resources
In this article:
minus iconplus icon
Share the Blog

Safeguarding Data Integrity and Privacy in the Age of AI-Powered Large Language Models (LLMs)

November 3, 2025
4
Min Read
Data Security

In the burgeoning realm of artificial intelligence (AI), Large Language Models (LLMs) have emerged as transformative tools, enabling the development of applications that revolutionize customer experiences and streamline business operations. These sophisticated models, trained on massive volumes of text data, can generate human-quality text, translate languages, write creative content, and answer complex questions.

Unfortunately, the rapid adoption of LLMs - coupled with their extensive data consumption - has introduced critical challenges around data integrity, privacy, and access control during both training and inference. As organizations operationalize LLMs at scale in 2025, addressing these risks has become essential to responsible AI adoption.

What’s Changed in LLM Security in 2025

LLM security in 2025 looks fundamentally different from earlier adoption phases. While initial concerns focused primarily on prompt injection and output moderation, today’s risk profile is dominated by data exposure, identity misuse, and over-privileged AI systems.

Several shifts now define the modern LLM security landscape:

  • Retrieval-augmented generation (RAG) has become the default architecture, dynamically connecting LLMs to internal data stores and increasing the risk of sensitive data exposure at inference time.
  • Fine-tuning and continual training on proprietary data are now common, expanding the blast radius of data leakage or poisoning incidents.
  • Agentic AI and tool-calling capabilities introduce new attack surfaces, where excessive permissions can enable unintended actions across cloud services and SaaS platforms.
  • Multi-model and hybrid AI environments complicate data governance, access control, and visibility across LLM workflows.

As a result, securing LLMs in 2025 requires more than static policies or point-in-time reviews. Organizations must adopt continuous data discovery, least-privilege access enforcement, and real-time monitoring to protect sensitive data throughout the LLM lifecycle.

Challenges: Navigating the Risks of LLM Training

Against this backdrop, the training of LLMs often involves the use of vast datasets containing sensitive information such as personally identifiable information (PII), intellectual property, and financial records. This concentration of valuable data presents a compelling target for malicious actors seeking to exploit vulnerabilities and gain unauthorized access.

One of the primary challenges is preventing data leakage or public disclosure. LLMs can inadvertently disclose sensitive information if not properly configured or protected. This disclosure can occur through various means, such as unauthorized access to training data, vulnerabilities in the LLM itself, or improper handling of user inputs.

Another critical concern is avoiding overly permissive configurations. LLMs can be configured to allow users to provide inputs that may contain sensitive information. If these inputs are not adequately filtered or sanitized, they can be incorporated into the LLM's training data, potentially leading to the disclosure of sensitive information.

Finally, organizations must be mindful of the potential for bias or error in LLM training data. Biased or erroneous data can lead to biased or erroneous outputs from the LLM, which can have detrimental consequences for individuals and organizations.

OWASP Top 10 for LLM Applications

The OWASP Top 10 for LLM Applications identifies and prioritizes critical vulnerabilities that can arise in LLM applications. Among these, LLM03 Training Data Poisoning, LLM06 Sensitive Information Disclosure, LLM08 Excessive Agency, and LLM10 Model Theft pose significant risks that cybersecurity professionals must address. Let's dive into these:

OWASP Top 10 for LLM Applications

LLM03: Training Data Poisoning

LLM03 addresses the vulnerability of LLMs to training data poisoning, a malicious attack where carefully crafted data is injected into the training dataset to manipulate the model's behavior. This can lead to biased or erroneous outputs, undermining the model's reliability and trustworthiness.

The consequences of LLM03 can be severe. Poisoned models can generate biased or discriminatory content, perpetuating societal prejudices and causing harm to individuals or groups. Moreover, erroneous outputs can lead to flawed decision-making, resulting in financial losses, operational disruptions, or even safety hazards.


LLM06: Sensitive Information Disclosure

LLM06 highlights the vulnerability of LLMs to inadvertently disclosing sensitive information present in their training data. This can occur when the model is prompted to generate text or code that includes personally identifiable information (PII), trade secrets, or other confidential data.

The potential consequences of LLM06 are far-reaching. Data breaches can lead to financial losses, reputational damage, and regulatory penalties. Moreover, the disclosure of sensitive information can have severe implications for individuals, potentially compromising their privacy and security.

LLM08: Excessive Agency

LLM08 focuses on the risk of LLMs exhibiting excessive agency, meaning they may perform actions beyond their intended scope or generate outputs that cause harm or offense. This can manifest in various ways, such as the model generating discriminatory or biased content, engaging in unauthorized financial transactions, or even spreading misinformation.

Excessive agency poses a significant threat to organizations and society as a whole. Supply chain compromises and excessive permissions to AI-powered apps can erode trust, damage reputations, and even lead to legal or regulatory repercussions. Moreover, the spread of harmful or offensive content can have detrimental social impacts.

LLM10: Model Theft

LLM10 highlights the risk of model theft, where an adversary gains unauthorized access to a trained LLM or its underlying intellectual property. This can enable the adversary to replicate the model's capabilities for malicious purposes, such as generating misleading content, impersonating legitimate users, or conducting cyberattacks.

Model theft poses significant threats to organizations. The loss of intellectual property can lead to financial losses and competitive disadvantages. Moreover, stolen models can be used to spread misinformation, manipulate markets, or launch targeted attacks on individuals or organizations.

Recommendations: Adopting Responsible Data Protection Practices

To mitigate the risks associated with LLM training data, organizations must adopt a comprehensive approach to data protection. This approach should encompass data hygiene, policy enforcement, access controls, and continuous monitoring.

Data hygiene is essential for ensuring the integrity and privacy of LLM training data. Organizations should implement stringent data cleaning and sanitization procedures to remove sensitive information and identify potential biases or errors.

Policy enforcement is crucial for establishing clear guidelines for the handling of LLM training data. These policies should outline acceptable data sources, permissible data types, and restrictions on data access and usage.

Access controls should be implemented to restrict access to LLM training data to authorized personnel and identities only, including third party apps that may connect. This can be achieved through role-based access control (RBAC), zero-trust IAM, and multi-factor authentication (MFA) mechanisms.

Continuous monitoring is essential for detecting and responding to potential threats and vulnerabilities. Organizations should implement real-time monitoring tools to identify suspicious activity and take timely action to prevent data breaches.

Solutions: Leveraging Technology to Safeguard Data

In the rush to innovate, developers must remain keenly aware of the inherent risks involved with training LLMs if they wish to deliver responsible, effective AI that does not jeopardize their customer's data.  Specifically, it is a foremost duty to protect the integrity and privacy of LLM training data sets, which often contain sensitive information.

Preventing data leakage or public disclosure, avoiding overly permissive configurations, and negating bias or error that can contaminate such models should be top priorities.

Technological solutions play a pivotal role in safeguarding data integrity and privacy during LLM training. Data security posture management (DSPM) solutions can automate data security processes, enabling organizations to maintain a comprehensive data protection posture.

DSPM solutions provide a range of capabilities, including data discovery, data classification, data access governance (DAG), and data detection and response (DDR). These capabilities help organizations identify sensitive data, enforce access controls, detect data breaches, and respond to security incidents.

Cloud-native DSPM solutions offer enhanced agility and scalability, enabling organizations to adapt to evolving data security needs and protect data across diverse cloud environments.

Sentra: Automating LLM Data Security Processes

Having to worry about securing yet another threat vector should give overburdened security teams pause. But help is available.

Sentra has developed a data privacy and posture management solution that can automatically secure LLM training data in support of rapid AI application development.

The solution works in tandem with AWS SageMaker, GCP Vertex AI, or other AI IDEs to support secure data usage within ML training activities.  The solution combines key capabilities including DSPM, DAG, and DDR to deliver comprehensive data security and privacy.

Its cloud-native design discovers all of your data and ensures good data hygiene and security posture via policy enforcement, least privilege access to sensitive data, and monitoring and near real-time alerting to suspicious identity (user/app/machine) activity, such as data exfiltration, to thwart attacks or malicious behavior early. The solution frees developers to innovate quickly and for organizations to operate with agility to best meet requirements, with confidence that their customer data and proprietary information will remain protected.

LLMs are now also built into Sentra’s classification engine and data security platform to provide unprecedented classification accuracy for unstructured data. Learn more about Large Language Models (LLMs) here.

Conclusion: Securing the Future of AI with Data Privacy

AI holds immense potential to transform our world, but its development and deployment must be accompanied by a steadfast commitment to data integrity and privacy. Protecting the integrity and privacy of data in LLMs is essential for building responsible and ethical AI applications. By implementing data protection best practices, organizations can mitigate the risks associated with data leakage, unauthorized access, and bias. Sentra's DSPM solution provides a comprehensive approach to data security and privacy, enabling organizations to develop and deploy LLMs with speed and confidence.

If you want to learn more about Sentra's Data Security Platform and how LLMs are now integrated into our classification engine to deliver unmatched accuracy for unstructured data, request a demo today.

<blogcta-big>

David Stuart is Senior Director of Product Marketing for Sentra, a leading cloud-native data security platform provider, where he is responsible for product and launch planning, content creation, and analyst relations. Dave is a 20+ year security industry veteran having held product and marketing management positions at industry luminary companies such as Symantec, Sourcefire, Cisco, Tenable, and ZeroFox. Dave holds a BSEE/CS from University of Illinois, and an MBA from Northwestern Kellogg Graduate School of Management.

Subscribe

Latest Blog Posts

Ariel Rimon
Ariel Rimon
Daniel Suissa
Daniel Suissa
February 16, 2026
4
Min Read

How Modern Data Security Discovers Sensitive Data at Cloud Scale

How Modern Data Security Discovers Sensitive Data at Cloud Scale

Modern cloud environments contain vast amounts of data stored in object storage services such as Amazon S3, Google Cloud Storage, and Azure Blob Storage. In large organizations, a single data store can contain billions (or even tens of billions) of objects. In this reality, traditional approaches that rely on scanning every file to detect sensitive data quickly become impractical.

Full object-level inspection is expensive, slow, and difficult to sustain over time. It increases cloud costs, extends onboarding timelines, and often fails to keep pace with continuously changing data. As a result, modern data security platforms must adopt more intelligent techniques to build accurate data inventories and sensitivity models without scanning every object.

Why Object-Level Scanning Fails at Scale

Object storage systems expose data as individual objects, but treating each object as an independent unit of analysis does not reflect how data is actually created, stored, or used.

In large environments, scanning every object introduces several challenges:

  • Cost amplification from repeated content inspection at massive scale
  • Long time to actionable insights during the first scan
  • Operational bottlenecks that prevent continuous scanning
  • Diminishing returns, as many objects contain redundant or structurally identical data

The goal of data discovery is not exhaustive inspection, but rather accurate understanding of where sensitive data exists and how it is organized.

The Dataset as the Correct Unit of Analysis

Although cloud storage presents data as individual objects, most data is logically organized into datasets. These datasets often follow consistent structural patterns such as:

  • Time-based partitions
  • Application or service-specific logs
  • Data lake tables and exports
  • Periodic reports or snapshots

For example, the following objects are separate files but collectively represent a single dataset:

logs/2026/01/01/app_events_001.json

logs/2026/01/02/app_events_002.json

logs/2026/01/03/app_events_003.json

While these objects differ by date, their structure, schema, and sensitivity characteristics are typically consistent. Treating them as a single dataset enables more accurate and scalable analysis.

Analyzing Storage Structure Without Reading Every File

Modern data discovery platforms begin by analyzing storage metadata and object structure, rather than file contents.

This includes examining:

  • Object paths and prefixes
  • Naming conventions and partition keys
  • Repeating directory patterns
  • Object counts and distribution

By identifying recurring patterns and natural boundaries in storage layouts, platforms can infer how objects relate to one another and where dataset boundaries exist. This analysis does not require reading object contents and can be performed efficiently at cloud scale.

Configurable by Design

Sampling can be disabled for specific data sources, and the dataset grouping algorithm can be adjusted by the user. This allows teams to tailor the discovery process to their environment and needs.


Automatic Grouping into Dataset-Level Assets

Using structural analysis, objects are automatically grouped into dataset-level assets. Clustering algorithms identify related objects based on path similarity, partitioning schemes, and organizational patterns. This process requires no manual configuration and adapts as new objects are added. Once grouped, these datasets become the primary unit for further analysis, replacing object-by-object inspection with a more meaningful abstraction.

Representative Sampling for Sensitivity Inference

After grouping, sensitivity analysis is performed using representative sampling. Instead of inspecting every object, the platform selects a small, statistically meaningful subset of files from each dataset.

Sampling strategies account for factors such as:

  • Partition structure
  • File size and format
  • Schema variation within the dataset

By analyzing these samples, the platform can accurately infer the presence of sensitive data across the entire dataset. This approach preserves accuracy while dramatically reducing the amount of data that must be scanned.

Handling Non-Standard Storage Layouts

In some environments, storage layouts may follow unconventional or highly customized naming schemes that automated grouping cannot fully interpret. In these cases, manual grouping provides additional precision. Security analysts can define logical dataset boundaries, often supported by LLM-assisted analysis to better understand complex or ambiguous structures. Once defined, the same sampling and inference mechanisms are applied, ensuring consistent sensitivity assessment even in edge cases.

Scalability, Cost, and Operational Impact

By combining structural analysis, grouping, and representative sampling, this approach enables:

  • Scalable data discovery across millions or billions of objects
  • Predictable and significantly reduced cloud scanning costs
  • Faster onboarding and continuous visibility as data changes
  • High confidence sensitivity models without exhaustive inspection

This model aligns with the realities of modern cloud environments, where data volume and velocity continue to increase.

From Discovery to Classification and Continuous Risk Management

Dataset-level asset discovery forms the foundation for scalable classification, access governance, and risk detection. Once assets are defined at the dataset level, classification becomes more accurate and easier to maintain over time. This enables downstream use cases such as identifying over-permissioned access, detecting risky data exposure, and managing AI-driven data access patterns.

Applying These Principles in Practice

Platforms like Sentra apply these principles to help organizations discover, classify, and govern sensitive data at cloud scale - without relying on full object-level scans. By focusing on dataset-level discovery and intelligent sampling, Sentra enables continuous visibility into sensitive data while keeping costs and operational overhead under control.

<blogcta-big>

Read More
Elie Perelman
Elie Perelman
February 13, 2026
3
Min Read

Best Data Access Governance Tools

Best Data Access Governance Tools

Managing access to sensitive information is becoming one of the most critical challenges for organizations in 2026. As data sprawls across cloud platforms, SaaS applications, and on-premises systems, enterprises face compliance violations, security breaches, and operational inefficiencies. Data Access Governance Tools provide automated discovery, classification, and access control capabilities that ensure only authorized users interact with sensitive data. This article examines the leading platforms, essential features, and implementation strategies for effective data access governance.

Best Data Access Governance Tools

The market offers several categories of solutions, each addressing different aspects of data access governance. Enterprise platforms like Collibra, Informatica Cloud Data Governance, and Atlan deliver comprehensive metadata management, automated workflows, and detailed data lineage tracking across complex data estates.

Specialized Data Access Governance (DAG) platforms focus on permissions and entitlements. Varonis, Immuta, and Securiti provide continuous permission mapping, risk analytics, and automated access reviews. Varonis identifies toxic combinations by discovering and classifying sensitive data, then correlating classifications with access controls to flag scenarios where high-sensitivity files have overly broad permissions.

User Reviews and Feedback

Varonis

  • Detailed file access analysis and real-time protection capabilities
  • Excellent at identifying toxic permission combinations
  • Learning curve during initial implementation

BigID

  • AI-powered classification with over 95% accuracy
  • Handles both structured and unstructured data effectively
  • Strong privacy automation features
  • Technical support response times could be improved

OneTrust

  • User-friendly interface and comprehensive privacy management
  • Deep integration into compliance frameworks
  • Robust feature set requires organizational support to fully leverage

Sentra

  • Effective data discovery and automation capabilities (January 2026 reviews)
  • Significantly enhances security posture and streamlines audit processes
  • Reduces cloud storage costs by approximately 20%

Critical Capabilities for Modern Data Access Governance

Effective platforms must deliver several core capabilities to address today's challenges:

Unified Visibility

Tools need comprehensive visibility across IaaS, PaaS, SaaS, and on-premises environments without moving data from its original location. This "in-environment" architecture ensures data never leaves organizational control while enabling complete governance.

Dynamic Data Movement Tracking

Advanced platforms monitor when sensitive assets flow between regions, migrate from production to development, or enter AI pipelines. This goes beyond static location mapping to provide real-time visibility into data transformations and transfers.

Automated Classification

Modern tools leverage AI and machine learning to identify sensitive data with high accuracy, then apply appropriate tags that drive downstream policy enforcement. Deep integration with native cloud security tools, particularly Microsoft Purview, enables seamless policy enforcement.

Toxic Combination Detection

Platforms must correlate data sensitivity with access permissions to identify scenarios where highly sensitive information has broad or misconfigured controls. Once detected, systems should provide remediation guidance or trigger automated actions.

Infrastructure and Integration Considerations

Deployment architecture significantly impacts governance effectiveness. Agentless solutions connecting via cloud provider APIs offer zero impact on production latency and simplified deployment. Some platforms use hybrid approaches combining agentless scanning with lightweight collectors when additional visibility is required.

Integration Area Key Considerations Example Capabilities
Microsoft Ecosystem Native integration with Microsoft Purview, Microsoft 365, and Azure Varonis monitors Copilot AI prompts and enforces consistent policies
Data Platforms Direct remediation within platforms such as Snowflake BigID automatically enforces dynamic data masking and tagging
Cloud Providers API-based scanning without performance overhead Sentra’s agentless architecture scans environments without deploying agents

Open Source Data Governance Tools

Organizations seeking cost-effective or customizable solutions can leverage open source tools. Apache Atlas, originally designed for Hadoop environments, provides mature governance capabilities that, when integrated with Apache Ranger, support tag-based policy management for flexible access control.

DataHub, developed at LinkedIn, features AI-powered metadata ingestion and role-based access control. OpenMetadata offers a unified metadata platform consolidating information across data sources with data lineage tracking and customized workflows.

While open source tools provide foundational capabilities, metadata cataloging, data lineage tracking, and basic access controls, achieving enterprise-grade governance typically requires additional customization, integration work, and infrastructure investment. The software is free, but self-hosting means accounting for operational costs and expertise needed to maintain these platforms.

Understanding the Gartner Magic Quadrant for Data Governance Tools

Gartner's Magic Quadrant assesses vendors on ability to execute and completeness of vision. For data access governance, Gartner examines how effectively platforms define, automate, and enforce policies controlling user access to data.

<blogcta-big>

Read More
Gilad Golani
Gilad Golani
David Stuart
David Stuart
February 12, 2026
4
Min Read

How to Supercharge Microsoft Purview DLP and Make Copilot Safe by Fixing Labels at the Source

How to Supercharge Microsoft Purview DLP and Make Copilot Safe by Fixing Labels at the Source

For organizations invested in Microsoft 365, Purview and Copilot now sit at the center of both data protection and productivity. Purview offers rich DLP capabilities, along with sensitivity labels that drive encryption, retention, and policy. Copilot promises to unlock new value from content in SharePoint, OneDrive, Teams, and other services.

But there is a catch. Both Purview DLP and Copilot depend heavily on labels and correct classification.

If labels are missing, wrong, or inconsistent, then:

  • DLP rules fire in the wrong places (creating false positives) or miss critical data (worse!).
  • Copilot accesses content you never intended it to see and can inadvertently surface it in responses.

In many environments, that’s exactly what’s happening. Labels are applied manually. Legacy content, exports from non‑Microsoft systems, and AI‑ready datasets live side by side with little or no consistent tagging. Purview has powerful controls, it just doesn’t always have the accurate inputs it needs.

The fastest way to boost performance of Purview DLP and make Copilot safe is to fix labels at the source using a DSPM platform, then let Microsoft’s native controls do the work they’re already good at.

The limits of M365‑only classification

Purview’s built-in classifiers understand certain patterns and can infer sensitivity from content inside the Microsoft 365 estate. That can be useful, but it doesn’t solve two big problems.

First, PHI, PCI, PII, and IP often originate in systems outside of M365; core banking platforms, claims systems, Snowflake, Databricks, and third‑party SaaS applications. When that data is exported or synced into SharePoint, OneDrive, or Teams, it often arrives without accurate labels.

Second, even within M365, there are years of accumulated documents, emails, and chat history that have never been systematically classified. Applying labels retroactively is time‑consuming and error‑prone if you rely on manual tagging or narrow content rules. And once there, without contextual analysis and deeper understanding of the unstructured files in which the data lives, it becomes extremely difficult to apply precise sensitivity labels.When you add Copilot (or any AI agent/assistant) into the mix, any mislabeling or blind spots in classification can quickly turn into AI‑driven data exposure. The stakes are higher, and so is the need for a more robust foundation.

Using DSPM to fix labels at the source

A DSPM platform like Sentra plugs into your environment at a different layer. It connects not just to Microsoft 365, but also to cloud providers, data warehouses, SaaS applications, collaboration tools, and AI platforms. It then builds a cross‑environment view of where sensitive data lives and what it contains, based on multi‑signal, AI‑assisted classification that’s tuned to your business context.

Once it has that view, Sentra can automatically apply or correct Microsoft Purview Information Protection (MPIP) labels across M365 content and, where appropriate, back into other systems. Instead of relying on spotty manual tagging and local heuristics, you get labels that reflect a consistent, enterprise‑wide understanding of sensitivity.

Supercharging Microsoft Purview DLP with Sentra



Those labels become the language that Purview DLP, encryption, retention, and Copilot controls understand. You are effectively giving Microsoft’s native tools a richer, more accurate map of your data, enabling them to confidently apply appropriate controls and streamline remediations.

Making Purview DLP work smarter

When labels are trustworthy, Purview DLP policies become easier to design and maintain. Rather than creating sprawling rule sets that combine patterns, locations, and exceptions, you can express policies in simple, label‑centric terms:

  • “Encrypt and allow PHI sent to approved partners; block PHI sent anywhere else.”
  • “Block Highly Confidential documents shared with external accounts; prompt for justification when Internal documents leave the tenant.”

DSPM’s role is to ensure that content carrying PHI or other regulated data is actually labeled as such, whether it started life in M365 or came from elsewhere. Purview then enforces DLP based on those labels, with far fewer false positives and far fewer edge cases. During rollout, you can run new label‑driven policies in audit mode to observe how they would behave, work with business stakeholders to adjust where necessary, and then move the most critical rules into full enforcement.

Keeping Copilot inside the guardrails

Copilot adds another dimension to this story. By design, it reads and reasons over large swaths of your content, then generates responses or summaries based on that content. If you don’t control what Copilot can see, it may surface PHI in a chat about scheduling, or include sensitive IP in a generic project update.

Here again, labels should be the control plane. Once DSPM has ensured that sensitive content is labeled accurately and consistently, you can use those labels to govern Copilot:

  • Limit Copilot’s access to certain labels or sites, especially those holding PHI, PCI, or trade secrets.
  • Restrict certain operations (such as summarization or sharing) when output would be based on Highly Confidential content.
  • Exclude specific labeled datasets from Copilot’s index entirely.

Because DSPM also tracks where labeled data moves, it can alert you when sensitive content is copied into a location with different Copilot rules. That gives you an opportunity to remediate before an incident, rather than discovering the issue only after a problematic AI response.

A practical path for Microsoft‑centric organizations

For organizations that have standardized on Microsoft 365, the message is not “replace Purview” or “turn off Copilot.” It’s to recognize that Purview and Copilot need a stronger foundation of data intelligence to act safely and predictably.

That foundation comes from pairing DSPM and auto‑labeling with Purview’s native capabilities, which combined enable you to:

  1. Discover and classify sensitive data across your full estate, including non‑Microsoft sources.
  2. Auto‑apply MPIP labels so that M365 content is tagged accurately and consistently.
  3. Simplify DLP and Copilot policies to be label‑driven rather than pattern‑driven.
  4. Iterate in audit mode before expanding enforcement.

Once labels are fixed at the source, you can lean on Purview DLP and Copilot with much more confidence. You’ll spend less time chasing noisy alerts and unexpected AI behavior, and more time using the Microsoft ecosystem the way it was intended: as a powerful, integrated platform for secure productivity.

Ready to supercharge Purview DLP and make M365 Copilot safe by fixing labels at the source? Schedule a Sentra demo.

<blogcta-big>

Read More
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security. Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!

Before you go...

Get the Gartner Customers' Choice for DSPM Report

Read why 98% of users recommend Sentra.

White Gartner Peer Insights Customers' Choice 2025 badge with laurel leaves inside a speech bubble.