Sentra Launches Breakthrough AI Classification Capabilities!
All Resources
In this article:
minus iconplus icon
Share the Blog

Safeguarding Data Integrity and Privacy in the Age of AI-Powered Large Language Models (LLMs)

December 6, 2023
4
Min Read
Data Security

In the burgeoning realm of artificial intelligence (AI), Large Language Models (LLMs) have emerged as transformative tools, enabling the development of applications that revolutionize customer experiences and streamline business operations. These sophisticated AI models, trained on massive amounts of text data, can generate human-quality text, translate languages, write different kinds of creative content, and answer questions in an informative way.

Unfortunately, the extensive data consumption and rapid adoption of LLMs has also brought to light critical challenges surrounding the protection of data integrity and privacy during the training process. As organizations strive to harness the power of LLMs responsibly, it is imperative to address these vulnerabilities and ensure that sensitive information remains secure.

Challenges: Navigating the Risks of LLM Training

The training of LLMs often involves the utilization of vast amounts of data, often containing sensitive information such as personally identifiable information (PII), intellectual property, and financial records. This wealth of data presents a tempting target for malicious actors seeking to exploit vulnerabilities and gain unauthorized access.

One of the primary challenges is preventing data leakage or public disclosure. LLMs can inadvertently disclose sensitive information if not properly configured or protected. This disclosure can occur through various means, such as unauthorized access to training data, vulnerabilities in the LLM itself, or improper handling of user inputs.

Another critical concern is avoiding overly permissive configurations. LLMs can be configured to allow users to provide inputs that may contain sensitive information. If these inputs are not adequately filtered or sanitized, they can be incorporated into the LLM's training data, potentially leading to the disclosure of sensitive information.

Finally, organizations must be mindful of the potential for bias or error in LLM training data. Biased or erroneous data can lead to biased or erroneous outputs from the LLM, which can have detrimental consequences for individuals and organizations.

OWASP Top 10 for LLM Applications

The OWASP Top 10 for LLM Applications identifies and prioritizes critical vulnerabilities that can arise in LLM applications. Among these, LLM03 Training Data Poisoning, LLM06 Sensitive Information Disclosure, LLM08 Excessive Agency, and LLM10 Model Theft pose significant risks that cybersecurity professionals must address. Let's dive into these:

OWASP Top 10 for LLM Applications

LLM03: Training Data Poisoning

LLM03 addresses the vulnerability of LLMs to training data poisoning, a malicious attack where carefully crafted data is injected into the training dataset to manipulate the model's behavior. This can lead to biased or erroneous outputs, undermining the model's reliability and trustworthiness.

The consequences of LLM03 can be severe. Poisoned models can generate biased or discriminatory content, perpetuating societal prejudices and causing harm to individuals or groups. Moreover, erroneous outputs can lead to flawed decision-making, resulting in financial losses, operational disruptions, or even safety hazards.


LLM06: Sensitive Information Disclosure

LLM06 highlights the vulnerability of LLMs to inadvertently disclosing sensitive information present in their training data. This can occur when the model is prompted to generate text or code that includes personally identifiable information (PII), trade secrets, or other confidential data.

The potential consequences of LLM06 are far-reaching. Data breaches can lead to financial losses, reputational damage, and regulatory penalties. Moreover, the disclosure of sensitive information can have severe implications for individuals, potentially compromising their privacy and security.

LLM08: Excessive Agency

LLM08 focuses on the risk of LLMs exhibiting excessive agency, meaning they may perform actions beyond their intended scope or generate outputs that cause harm or offense. This can manifest in various ways, such as the model generating discriminatory or biased content, engaging in unauthorized financial transactions, or even spreading misinformation.

Excessive agency poses a significant threat to organizations and society as a whole. Supply chain compromises and excessive permissions to AI-powered apps can erode trust, damage reputations, and even lead to legal or regulatory repercussions. Moreover, the spread of harmful or offensive content can have detrimental social impacts.

LLM10: Model Theft

LLM10 highlights the risk of model theft, where an adversary gains unauthorized access to a trained LLM or its underlying intellectual property. This can enable the adversary to replicate the model's capabilities for malicious purposes, such as generating misleading content, impersonating legitimate users, or conducting cyberattacks.

Model theft poses significant threats to organizations. The loss of intellectual property can lead to financial losses and competitive disadvantages. Moreover, stolen models can be used to spread misinformation, manipulate markets, or launch targeted attacks on individuals or organizations.

Recommendations: Adopting Responsible Data Protection Practices

To mitigate the risks associated with LLM training data, organizations must adopt a comprehensive approach to data protection. This approach should encompass data hygiene, policy enforcement, access controls, and continuous monitoring.

Data hygiene is essential for ensuring the integrity and privacy of LLM training data. Organizations should implement stringent data cleaning and sanitization procedures to remove sensitive information and identify potential biases or errors.

Policy enforcement is crucial for establishing clear guidelines for the handling of LLM training data. These policies should outline acceptable data sources, permissible data types, and restrictions on data access and usage.

Access controls should be implemented to restrict access to LLM training data to authorized personnel and identities only, including third party apps that may connect. This can be achieved through role-based access control (RBAC), zero-trust IAM, and multi-factor authentication (MFA) mechanisms.

Continuous monitoring is essential for detecting and responding to potential threats and vulnerabilities. Organizations should implement real-time monitoring tools to identify suspicious activity and take timely action to prevent data breaches.

Solutions: Leveraging Technology to Safeguard Data

In the rush to innovate, developers must remain keenly aware of the inherent risks involved with training LLMs if they wish to deliver responsible, effective AI that does not jeopardize their customer's data.  Specifically, it is a foremost duty to protect the integrity and privacy of LLM training data sets, which often contain sensitive information.

Preventing data leakage or public disclosure, avoiding overly permissive configurations, and negating bias or error that can contaminate such models should be top priorities.

Technological solutions play a pivotal role in safeguarding data integrity and privacy during LLM training. Data security posture management (DSPM) solutions can automate data security processes, enabling organizations to maintain a comprehensive data protection posture.

DSPM solutions provide a range of capabilities, including data discovery, data classification, data access governance (DAG), and data detection and response (DDR). These capabilities help organizations identify sensitive data, enforce access controls, detect data breaches, and respond to security incidents.

Cloud-native DSPM solutions offer enhanced agility and scalability, enabling organizations to adapt to evolving data security needs and protect data across diverse cloud environments.

Sentra: Automating LLM Data Security Processes

Having to worry about securing yet another threat vector should give overburdened security teams pause. But help is available.

Sentra has developed a data privacy and posture management solution that can automatically secure LLM training data in support of rapid AI application development.

The solution works in tandem with AWS SageMaker, GCP Vertex AI, or other AI IDEs to support secure data usage within ML training activities.  The solution combines key capabilities including DSPM, DAG, and DDR to deliver comprehensive data security and privacy.

Its cloud-native design discovers all of your data and ensures good data hygiene and security posture via policy enforcement, least privilege access to sensitive data, and monitoring and near real-time alerting to suspicious identity (user/app/machine) activity, such as data exfiltration, to thwart attacks or malicious behavior early. The solution frees developers to innovate quickly and for organizations to operate with agility to best meet requirements, with confidence that their customer data and proprietary information will remain protected.

LLMs are now also built into Sentra’s classification engine and data security platform to provide unprecedented classification accuracy for unstructured data. Learn more about Large Language Models (LLMs) here.

Conclusion: Securing the Future of AI with Data Privacy

AI holds immense potential to transform our world, but its development and deployment must be accompanied by a steadfast commitment to data integrity and privacy. Protecting the integrity and privacy of data in LLMs is essential for building responsible and ethical AI applications. By implementing data protection best practices, organizations can mitigate the risks associated with data leakage, unauthorized access, and bias. Sentra's DSPM solution provides a comprehensive approach to data security and privacy, enabling organizations to develop and deploy LLMs with speed and confidence.

If you want to learn more about Sentra's Data Security Platform and how LLMs are now integrated into our classification engine to deliver unmatched accuracy for unstructured data, request a demo today.

<blogcta-big>

David Stuart is Senior Director of Product Marketing for Sentra, a leading cloud-native data security platform provider, where he is responsible for product and launch planning, content creation, and analyst relations. Dave is a 20+ year security industry veteran having held product and marketing management positions at industry luminary companies such as Symantec, Sourcefire, Cisco, Tenable, and ZeroFox. Dave holds a BSEE/CS from University of Illinois, and an MBA from Northwestern Kellogg Graduate School of Management.

Subscribe

Latest Blog Posts

Ward Balcerzak
Ward Balcerzak
December 11, 2025
3
Min Read

US State Privacy Laws 2026: DSPM Compliance Requirements & What You Need to Know

US State Privacy Laws 2026: DSPM Compliance Requirements & What You Need to Know

By 2026, American data privacy will look very different as a wave of new state laws redefines what it means to protect sensitive information. Organizations face a regulatory maze: more than 20 states will soon require not only “reasonable security” but also Data Protection Impact Assessments (DPIAs), explicit limits on data collection, and, in some cases, detailed data inventories. These requirements are quickly becoming standard, and ignoring them simply isn’t an option. The risk of penalties and enforcement actions is climbing fast.

But through all these changes, one major question remains: How can any organization comply if it doesn’t even know where its most sensitive data is? Data Security Posture Management (DSPM) has become the solution, making data visibility and automation central for meeting ongoing compliance needs.

Mapping the New Wave of State Privacy Mandates

Several state privacy laws going into effect in 2025 and 2026 are raising the stakes for compliance. Kentucky, Indiana, and Rhode Island’s new laws, effective January 1, 2026, require both security measures and DPIAs for handling high-risk or sensitive data. Minnesota’s law stands out even more: it moves past earlier vague “reasonable” security language and mandates comprehensive data inventories.

Other key states include Minnesota, which explicitly requires data inventories, Maryland with strict data minimization rules, and Tennessee, which gives organizations an affirmative defense if they’ve adopted a NIST-aligned privacy program. These requirements mean organizations now need to track what data they collect, know exactly where it’s stored, and show evidence of compliance when asked. If your organization operates in more than one state, keeping up with this web of laws will soon become impossible without dedicated solutions (US consumer privacy laws 2025 update).

Why Data Visibility is Now Foundational to Compliance

To meet DPIA, minimization, and security safeguard rules, you need full visibility into where sensitive or regulated data lives - and how it moves across your environment. Recent privacy laws are moving closer to GDPR-like standards, with DPIAs required not only for biometric data but also for broad categories like targeted advertising and profiling. Minnesota leads with its clear requirement for full data inventories, setting the standard that you can’t prove compliance unless you understand your data (US cybersecurity and data privacy review and outlook 2025).

This shift puts DSPM front and center: you now need ongoing discovery and classification of your entire sensitive data footprint. Without a strong data foundation, organizations will find it hard to complete DPIAs, handle audits, or defend themselves in investigations.

Automation: The Only Viable Path for Assessment and Audit Readiness

State privacy rules are getting more complicated, and many enforcement authorities are shortening or removing 'right-to-cure' periods. That means manual compliance simply won’t keep up. Automation is now the only way to manage compliance as regulations tighten (5 trends to watch: 2025 US data privacy & cybersecurity).

With DSPM and automation, organizations get ongoing discovery, real-time data classification, and instant evidence collection - all required for fast DPIAs and responsive audits. For companies facing regulators or preparing for multi-state oversight, this means you already have the proof and documentation you need. Relying on spreadsheets or one-time assessments at this point only increases your risk.

Sentra: Your Strategic Bridge to Privacy Law Compliance

Sentra’s DSPM platform is built to tackle these expanding privacy law requirements. The agentless platform covers AWS, Azure, GCP, SaaS, and hybrid environments, removing both visibility gaps and the hassle found in older solutions (Sentra: DSPM for compliance use cases).

With continuous, automated discovery and data classification, you always know exactly where your sensitive data is, how it moves, and how it’s being protected. Sentra’s integrated Data Detection & Response (DDR) catches and fixes risks or policy violations early, closing gaps before regulators - or attackers - can take advantage (Sensitive data exposure insight). Combined with clear reporting and on-demand audit documentation, Sentra helps you meet new state privacy laws and stay audit-ready, even as your business or data needs change.

Conclusion

The arrival of new state privacy laws in 2025 and 2026 is changing how organizations must handle sensitive data. Security safeguards, DPIAs, minimization, and full inventories are now required - not just nice-to-have.

DSPM is now a compliance must-have. Without complete data visibility and automation, following the web of state rules isn’t difficult - it’s impossible. Sentra’s agentless, multi-cloud platform keeps your organization continuously informed, giving compliance, security, and privacy teams the control they need to keep up with new regulations.

Want to see how your organization stacks up for 2026 laws? Book a DSPM Compliance Readiness Assessment or check out Sentra’s automated DPIA tools today.

<blogcta-big>

Read More
David Stuart
David Stuart
Gilad Golani
Gilad Golani
December 4, 2025
3
Min Read

Zero Data Movement: The New Data Security Standard that Eliminates Egress Risk

Zero Data Movement: The New Data Security Standard that Eliminates Egress Risk

Cloud adoption and the explosion of data have boosted business agility, but they’ve also created new headaches for security teams. As companies move sensitive information into multi-cloud and hybrid environments, old security models start to break down. Shuffling data for scanning and classification adds risk, piles on regulatory complexity, and drives up operational costs.

Zero Data Movement (ZDM) offers a new architectural approach, reshaping how advanced Data Security Posture Management (DSPM) platforms provide visibility, protection, and compliance. This post breaks down what makes ZDM unique, why it matters for security-focused enterprises, and how Sentra provides an innovative agentless and scalable design that is genuinely a zero data movement DSPM .

Defining Zero Data Movement Architecture

Zero Data Movement (ZDM) sets a new standard in data security. The premise is straightforward: sensitive data should stay in its original environment for security analysis, monitoring, and enforcement. Older models require copying, exporting, or centralizing data to scan it, while ZDM ensures that all security actions happen directly where data resides.

ZDM removes egress risk -shrinking the attack surface and reducing regulatory issues. For organizations juggling large cloud deployments and tight data residency rules, ZDM isn’t just an improvement - it's essential. Groups like the Cloud Security Alliance and new privacy regulations are moving the industry toward designs that build in privacy and non-stop protection.

Risks of Data Movement: Compliance, Cost, and Egress Exposure

Every time data is copied, exported, or streamed out of its native environment, new risks arise. Data movement creates challenges such as:

  • Egress risk: Data at rest or in transit outside its original environment  increases risk of breach, especially as those environments may be less secure.
  • Compliance and regulatory exposure: Moving data across borders or different clouds can break geo-fencing and privacy controls, leading to potential violations and steep fines.
  • Loss of context and control: Scattered data makes it harder to monitor everything, leaving gaps in visibility.
  • Rising total cost of ownership (TCO): Scanning and classification can incur heavy cloud compute costs - so efficiency matters.  Exporting or storing data, especially shadow data, drives up storage, egress, and compliance costs as well.

As more businesses rely on data, moving it unnecessarily only increases the risk - especially with fast-changing cloud regulations.

Legacy and Competitor Gaps: Why Data Movement Still Happens

Not every security vendor practices true zero data movement, and the differences are notable. Products from Cyera, Securiti, or older platforms still require temporary data exporting or duplication for analysis. This might offer a quick setup, but it exposes users to egress risks, insider threats, and compliance gaps - problems that are worse in regulated fields.

Competitors like Cyera often rely on shortcuts that fall short of ZDM’s requirements. Securiti and similar providers depend on connectors, API snapshots, or central data lakes, each adding potential risks and spreading data further than necessary. With ZDM, security operations like monitoring and classification happen entirely locally, removing the need to trust external storage or aggregation. For more detail on how data movement drives up risk.

The Business Value of Zero Data Movement DSPM

Zero data movement DSPM changes the equation for businesses:

  • Designed for compliance: Data remains within controlled environments, shrinking audit requirements and reducing breach likelihood.
  • Lower TCO and better efficiency: Eliminates hidden expenses from extra storage, duplicate assets, and exporting to external platforms.
  • Regulatory clarity and privacy: Supports data sovereignty, cross-border rules, and new zero trust frameworks with an egress-free approach.

Sentra’s agentless, cloud-native DSPM provides these benefits by ensuring sensitive data is never moved or copied. And Sentra delivers these benefits at scale - across multi-petabyte enterprise environments - without the performance and cost tradeoffs others suffer from. Real scenarios show the results: financial firms keep audit trails without data ever leaving allowed regions. Healthcare providers safeguard PHI at its source. Global SaaS companies secure customer data at scale, cost-effectively while meeting regional rules.

Future-Proofing Data Security: ZDM as the New Standard

With data volumes expected to hit 181 zettabytes in 2025, older protection methods that rely on moving data can’t keep up. Zero data movement architecture meets today's security demands and supports zero trust, metadata-driven access, and privacy-first strategies for the future.

Companies wanting to avoid dead ends should pick solutions that offer unified discovery, classification and policy enforcement without egress risk. Sentra’s ZDM architecture makes this possible, allowing organizations to analyze and protect information where it lives, at cloud speed and scale.

Conclusion

Zero Data Movement is more than a technical detail - it's a new architectural standard for any organization serious about risk control, compliance, and efficiency. As data grows and regulations become stricter, the old habits of moving, copying, or centralizing sensitive data will no longer suffice.

Sentra stands out by delivering a zero data movement DSPMplatform that's agentless, real-time, and truly multicloud. For security leaders determined to cut egress risk, lower compliance spending, and get ahead in privacy, ZDM is the clear path forward.

<blogcta-big>

Read More
Charles Garlow
Charles Garlow
December 3, 2025
3
Min Read

Petabyte Scale is a Security Requirement (Not a Feature): The Hidden Cost of Inefficient DSPM

Petabyte Scale is a Security Requirement (Not a Feature): The Hidden Cost of Inefficient DSPM

As organizations scramble to secure their sprawling cloud environments and deploy AI, many are facing a stark realization: handling petabyte-scale data is now a basic security requirement. With sensitive information multiplying across multiple clouds, SaaS, and AI-driven platforms, security leaders can't treat true data security at scale as a simple add-on or upgrade.

At the same time, speeding up digital transformation means higher and less visible operational costs for handling this data surge. Older Data Security Posture Management (DSPM) tools, especially those boasting broad, indiscriminate scans as evidence of their scale, are saddling organizations with rising cloud bills, slowdowns, and dangerous gaps in visibility. The costs of securing petabyte-scale data are now economic and technical, demanding efficiency instead of just scale. Sentra solves this with a highly-efficient cloud-native design, delivering 10x lower cloud compute costs.

Why Petabyte Scale is a Security Requirement

Data environments have exploded in both size and complexity. For Fortune 500 companies, fast-growing SaaS providers, and global organizations, data exists across public and hybrid clouds, business units, regions, and a stream of new applications.

Regulations such as GDPR, HIPAA, and rules from the SEC now demand current data inventories and continuous proof of risk management. In this environment, defending data at the petabyte level is now essential. Failing to classify and monitor this data efficiently means risking compliance and losing business trust. Security teams are feeling the strain. I meet security teams everyday and too many of them still struggle with data visibility and are already seeing the cracks forming in their current toolset as data scales.

The Hidden Cost of Inefficient DSPM: API Calls and Egress Bills

How DSPM tools perform scanning and discovery drives the real costs of securing petabyte-scale data. Some vendors highlight their capacity to scan multiple petabytes daily. But here's the reality: scanning everything, record by record, relying on huge numbers of API calls, becomes very expensive as your data estate grows.

Every API call can rack up costs, and all the resulting data egress and compute add up too. Large organizations might spend tens of thousands of dollars each month just to track what’s in their cloud. Even worse, older "full scan" DSPM strategies jam up operations with throttling, delays, and a flood of alerts that bury real risk. These legacy approaches simply don’t scale, and organizations relying on them end up paying more while knowing less.

 

Cyera’s "Petabyte Scale" Claims: At What Cloud Cost?

Cyera promotes its tool as an AI-native, agentless DSPM that can scan as much as 2 petabytes daily . While that’s an impressive technical achievement, the strategy of scanning everything leads directly to massive cloud infrastructure costs: frequent API hits, heavy egress, and big bills from AWS, Azure, and GCP.

At scale, these charges don’t just appear on invoices, they can actually stop adoption and limit security’s effectiveness. Cloud operations teams face API throttling, slow results, and a surge in remediation tickets as risks go unfiltered. In these fast-paced environments, recognizing the difference between a real threat and harmless data comes down to speed. The Bedrock Security blog points out how inefficient setups buckle under this weight, leaving teams stuck with lagging visibility and more operational headaches.

Sentra’s 10x Efficiency: Optimized Scanning for Real-World Scale

Sentra takes another route to manage the costs of securing petabyte-scale data. By combining agentless discovery with scanning guided by context and metadata, Sentra uses pattern recognition and an AI-driven clustering algorithm designed to detect machine-generated content—such as log files, invoices, and similar data types. By intelligently sampling data within each cluster, Sentra delivers efficient scanning while reducing scanning costs.

This approach enables data scanning to be prioritized based on risk and business value, rather than wasting time and money scanning the same data over and over again, skipping unnecessary API calls, lowering egress, and keeping cloud bills in check.

Large organizations gain a 10x efficiency edge: quicker classification of data, instant visibility into actual threats, lower operational expenses, and less demand on the network. By focusing attention only where it matters, Sentra matches data security posture management to the demands of current cloud growth and regulatory requirements.

This makes it possible for organizations to hit regulatory and audit targets without watching expenses spiral or opening up security gaps.Sentra offers multiple sampling levels, Quick (default), Moderate, Thorough, and Full, allowing customers to tailor their scanning strategy to balance cost and accuracy. For example, a highly regulated environment can be configured for a full scan, while less-regulated environments can use more efficient sampling. Petabyte-scale security gives the user complete control of their data enterprise and turns into something operationally and financially sustainable, rather than a technical milestone with a hidden cost. 

Efficiency is Non-Negotiable

Fortune 500 companies and digital-first organizations can’t treat efficiency as optional. Inefficient DSPM tools pile on costs, drain resources, and let vulnerabilities slip through, turning their security posture into a liability once scale becomes a factor. Sentra’s platform shows that efficiency is security: with targeted scanning, real context, and unified detection and response, organizations gain clarity and compliance while holding down expenses.

Don’t let your data protection approach crumble under petabyte-scale pressure. See what Sentra can do, reduce costs, and keep essential data secure - before you end up responding to breaches or audit failures.

Conclusion

Securing data at the petabyte level isn't some future aspiration - it's the standard for enterprises right now. Treating it as a secondary feature isn’t just shortsighted; it puts your company at risk, financially and operationally.

The right DSPM architecture brings efficiency, not just raw scale. Sentra delivers real-time, context-rich security posture with far greater efficiency, so your protection and your cloud spending can keep up with your growing business. Security needs to grow along with scale. Rising costs and new risks shouldn’t grow right alongside it.

Want to see how your current petabyte security posture compares? Schedule a demo and see Sentra’s efficiency for yourself.

<blogcta-big>

Read More
decorative ball
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security. Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!

Before you go...

Get the Gartner Customers' Choice for DSPM Report

Read why 98% of users recommend Sentra.

Gartner Certificate for Sentra