All Resources
In this article:
minus iconplus icon
Share the Blog

Safeguarding Data Integrity and Privacy in the Age of AI-Powered Large Language Models (LLMs)

November 3, 2025
4
Min Read
Data Security

In the burgeoning realm of artificial intelligence (AI), Large Language Models (LLMs) have emerged as transformative tools, enabling the development of applications that revolutionize customer experiences and streamline business operations. These sophisticated models, trained on massive volumes of text data, can generate human-quality text, translate languages, write creative content, and answer complex questions.

Unfortunately, the rapid adoption of LLMs - coupled with their extensive data consumption - has introduced critical challenges around data integrity, privacy, and access control during both training and inference. As organizations operationalize LLMs at scale in 2025, addressing these risks has become essential to responsible AI adoption.

What’s Changed in LLM Security in 2025

LLM security in 2025 looks fundamentally different from earlier adoption phases. While initial concerns focused primarily on prompt injection and output moderation, today’s risk profile is dominated by data exposure, identity misuse, and over-privileged AI systems.

Several shifts now define the modern LLM security landscape:

  • Retrieval-augmented generation (RAG) has become the default architecture, dynamically connecting LLMs to internal data stores and increasing the risk of sensitive data exposure at inference time.
  • Fine-tuning and continual training on proprietary data are now common, expanding the blast radius of data leakage or poisoning incidents.
  • Agentic AI and tool-calling capabilities introduce new attack surfaces, where excessive permissions can enable unintended actions across cloud services and SaaS platforms.
  • Multi-model and hybrid AI environments complicate data governance, access control, and visibility across LLM workflows.

As a result, securing LLMs in 2025 requires more than static policies or point-in-time reviews. Organizations must adopt continuous data discovery, least-privilege access enforcement, and real-time monitoring to protect sensitive data throughout the LLM lifecycle.

Challenges: Navigating the Risks of LLM Training

Against this backdrop, the training of LLMs often involves the use of vast datasets containing sensitive information such as personally identifiable information (PII), intellectual property, and financial records. This concentration of valuable data presents a compelling target for malicious actors seeking to exploit vulnerabilities and gain unauthorized access.

One of the primary challenges is preventing data leakage or public disclosure. LLMs can inadvertently disclose sensitive information if not properly configured or protected. This disclosure can occur through various means, such as unauthorized access to training data, vulnerabilities in the LLM itself, or improper handling of user inputs.

Another critical concern is avoiding overly permissive configurations. LLMs can be configured to allow users to provide inputs that may contain sensitive information. If these inputs are not adequately filtered or sanitized, they can be incorporated into the LLM's training data, potentially leading to the disclosure of sensitive information.

Finally, organizations must be mindful of the potential for bias or error in LLM training data. Biased or erroneous data can lead to biased or erroneous outputs from the LLM, which can have detrimental consequences for individuals and organizations.

OWASP Top 10 for LLM Applications

The OWASP Top 10 for LLM Applications identifies and prioritizes critical vulnerabilities that can arise in LLM applications. Among these, LLM03 Training Data Poisoning, LLM06 Sensitive Information Disclosure, LLM08 Excessive Agency, and LLM10 Model Theft pose significant risks that cybersecurity professionals must address. Let's dive into these:

OWASP Top 10 for LLM Applications

LLM03: Training Data Poisoning

LLM03 addresses the vulnerability of LLMs to training data poisoning, a malicious attack where carefully crafted data is injected into the training dataset to manipulate the model's behavior. This can lead to biased or erroneous outputs, undermining the model's reliability and trustworthiness.

The consequences of LLM03 can be severe. Poisoned models can generate biased or discriminatory content, perpetuating societal prejudices and causing harm to individuals or groups. Moreover, erroneous outputs can lead to flawed decision-making, resulting in financial losses, operational disruptions, or even safety hazards.


LLM06: Sensitive Information Disclosure

LLM06 highlights the vulnerability of LLMs to inadvertently disclosing sensitive information present in their training data. This can occur when the model is prompted to generate text or code that includes personally identifiable information (PII), trade secrets, or other confidential data.

The potential consequences of LLM06 are far-reaching. Data breaches can lead to financial losses, reputational damage, and regulatory penalties. Moreover, the disclosure of sensitive information can have severe implications for individuals, potentially compromising their privacy and security.

LLM08: Excessive Agency

LLM08 focuses on the risk of LLMs exhibiting excessive agency, meaning they may perform actions beyond their intended scope or generate outputs that cause harm or offense. This can manifest in various ways, such as the model generating discriminatory or biased content, engaging in unauthorized financial transactions, or even spreading misinformation.

Excessive agency poses a significant threat to organizations and society as a whole. Supply chain compromises and excessive permissions to AI-powered apps can erode trust, damage reputations, and even lead to legal or regulatory repercussions. Moreover, the spread of harmful or offensive content can have detrimental social impacts.

LLM10: Model Theft

LLM10 highlights the risk of model theft, where an adversary gains unauthorized access to a trained LLM or its underlying intellectual property. This can enable the adversary to replicate the model's capabilities for malicious purposes, such as generating misleading content, impersonating legitimate users, or conducting cyberattacks.

Model theft poses significant threats to organizations. The loss of intellectual property can lead to financial losses and competitive disadvantages. Moreover, stolen models can be used to spread misinformation, manipulate markets, or launch targeted attacks on individuals or organizations.

Recommendations: Adopting Responsible Data Protection Practices

To mitigate the risks associated with LLM training data, organizations must adopt a comprehensive approach to data protection. This approach should encompass data hygiene, policy enforcement, access controls, and continuous monitoring.

Data hygiene is essential for ensuring the integrity and privacy of LLM training data. Organizations should implement stringent data cleaning and sanitization procedures to remove sensitive information and identify potential biases or errors.

Policy enforcement is crucial for establishing clear guidelines for the handling of LLM training data. These policies should outline acceptable data sources, permissible data types, and restrictions on data access and usage.

Access controls should be implemented to restrict access to LLM training data to authorized personnel and identities only, including third party apps that may connect. This can be achieved through role-based access control (RBAC), zero-trust IAM, and multi-factor authentication (MFA) mechanisms.

Continuous monitoring is essential for detecting and responding to potential threats and vulnerabilities. Organizations should implement real-time monitoring tools to identify suspicious activity and take timely action to prevent data breaches.

Solutions: Leveraging Technology to Safeguard Data

In the rush to innovate, developers must remain keenly aware of the inherent risks involved with training LLMs if they wish to deliver responsible, effective AI that does not jeopardize their customer's data.  Specifically, it is a foremost duty to protect the integrity and privacy of LLM training data sets, which often contain sensitive information.

Preventing data leakage or public disclosure, avoiding overly permissive configurations, and negating bias or error that can contaminate such models should be top priorities.

Technological solutions play a pivotal role in safeguarding data integrity and privacy during LLM training. Data security posture management (DSPM) solutions can automate data security processes, enabling organizations to maintain a comprehensive data protection posture.

DSPM solutions provide a range of capabilities, including data discovery, data classification, data access governance (DAG), and data detection and response (DDR). These capabilities help organizations identify sensitive data, enforce access controls, detect data breaches, and respond to security incidents.

Cloud-native DSPM solutions offer enhanced agility and scalability, enabling organizations to adapt to evolving data security needs and protect data across diverse cloud environments.

Sentra: Automating LLM Data Security Processes

Having to worry about securing yet another threat vector should give overburdened security teams pause. But help is available.

Sentra has developed a data privacy and posture management solution that can automatically secure LLM training data in support of rapid AI application development.

The solution works in tandem with AWS SageMaker, GCP Vertex AI, or other AI IDEs to support secure data usage within ML training activities.  The solution combines key capabilities including DSPM, DAG, and DDR to deliver comprehensive data security and privacy.

Its cloud-native design discovers all of your data and ensures good data hygiene and security posture via policy enforcement, least privilege access to sensitive data, and monitoring and near real-time alerting to suspicious identity (user/app/machine) activity, such as data exfiltration, to thwart attacks or malicious behavior early. The solution frees developers to innovate quickly and for organizations to operate with agility to best meet requirements, with confidence that their customer data and proprietary information will remain protected.

LLMs are now also built into Sentra’s classification engine and data security platform to provide unprecedented classification accuracy for unstructured data. Learn more about Large Language Models (LLMs) here.

Conclusion: Securing the Future of AI with Data Privacy

AI holds immense potential to transform our world, but its development and deployment must be accompanied by a steadfast commitment to data integrity and privacy. Protecting the integrity and privacy of data in LLMs is essential for building responsible and ethical AI applications. By implementing data protection best practices, organizations can mitigate the risks associated with data leakage, unauthorized access, and bias. Sentra's DSPM solution provides a comprehensive approach to data security and privacy, enabling organizations to develop and deploy LLMs with speed and confidence.

If you want to learn more about Sentra's Data Security Platform and how LLMs are now integrated into our classification engine to deliver unmatched accuracy for unstructured data, request a demo today.

<blogcta-big>

David Stuart is Senior Director of Product Marketing for Sentra, a leading cloud-native data security platform provider, where he is responsible for product and launch planning, content creation, and analyst relations. Dave is a 20+ year security industry veteran having held product and marketing management positions at industry luminary companies such as Symantec, Sourcefire, Cisco, Tenable, and ZeroFox. Dave holds a BSEE/CS from University of Illinois, and an MBA from Northwestern Kellogg Graduate School of Management.

Subscribe

Latest Blog Posts

Yair Cohen
Yair Cohen
February 5, 2026
3
Min Read

OpenClaw (MoltBot): The AI Agent Security Crisis Enterprises Must Address Now

OpenClaw (MoltBot): The AI Agent Security Crisis Enterprises Must Address Now

OpenClaw, previously known as MoltBot, isn't just another cybersecurity story - it's a wake-up call for every organization. With over 150,000 GitHub stars and more than 300,000 users in just two months, OpenClaw’s popularity signals a huge change: autonomous AI agents are spreading quickly and dramatically broadening the attack surface in businesses. This is far beyond the risks of a typical ChatGPT plugin or a staff member pasting data into a chatbot. These agents live on user machines and servers with shell-level access, file system privileges, live memory control, and broad integration abilities, usually outside IT or security’s purview.

Older perimeter and endpoint security tools weren’t built to find or control agents that can learn, store information, and act independently in all kinds of environments. As organizations face this shadow AI risk, the need for real-time, data-level visibility becomes critical. Enter Data Security Posture Management (DSPM): a way for enterprises to understand, monitor, and respond to the unique threats that OpenClaw and its next-generation kin pose.

What makes OpenClaw different - and uniquely dangerous - for security teams?

OpenClaw runs by setting up a local HTTP server and agent gateway on endpoints. It provides shell access, automates browsers, and links with over 50 messaging platforms. But what really sets it apart is how it combines these features with persistent memory. That means agents can remember actions and data far better than any script or bot before. Palo Alto Networks calls this the 'lethal trifecta': direct access to private data, exposure to untrusted content, communication outside the organization, and persistent memory.

This risk isn't hypothetical. OpenClaw’s skill ecosystem functions like an unguarded software supply chain. Any third-party 'skill' a user adds to an agent can run with full privileges, opening doors to vulnerabilities that original developers can’t foresee. While earlier concerns focused on employees leaking information to public chatbots, tools like OpenClaw operate quietly at system level, often without IT noticing.

From theory to reality: OpenClaw exploitation is active and widespread

This threat is already real. OpenClaw’s design has exposed thousands of organizations to actual attacks. For instance, CVE-2026-25253 is a severe remote code execution flaw caused by a WebSocket validation error, with a CVSS score of 8.8. It lets attackers compromise an agent with a single click (critical OpenClaw vulnerability).

Attackers wasted no time. The ClawHavoc malware campaign, for example, spread over 341 malicious 'skills’, using OpenClaw’s official marketplace to push info-stealers and RATs directly into vulnerable environments. Over 21,000 exposed OpenClaw instances have turned up on the public internet, often protected by nothing stronger than a weak password, or no authentication at all. Researchers even found plaintext password storage in the code. The risk is both immediate and persistent.

The shadow AI dimension: why you’re likely exposed

One of the trickiest parts of OpenClaw and MoltBot is how easily they run outside official oversight. Research shows that more than 22% of enterprise customers have found MoltBot operating without IT approval. Agents connect with personal messaging apps, making it easy for employees to use them on devices IT doesn’t manage, creating blind spots in endpoint management.

This reflects a bigger shift: 68% of employees now access free AI tools using personal accounts, and 57% still paste sensitive data into these services. The risks tied to shadow AI keep rising, and so does the cost of breaches: incidents involving unsanctioned AI tools now average $670,000 higher than those without. No wonder experts at Palo Alto, Straiker, Google Cloud, and Intruder strongly advise enterprises to block or at least closely watch OpenClaw deployments.

Why classic security tools are defenseless - and why DSPM is essential

Despite many advances in endpoint, identity, and network defense, these tools fall short against AI agents such as OpenClaw. Agents often run code with system privileges and communicate independently, sometimes over encrypted or unfamiliar channels. This blinds existing security tools to what internal agent 'skills' are doing or what data they touch and process. The attack surface now includes prompt injection through emails and documents, poisoning of agent memory, delayed attacks, and natural language input that bypasses static scans.

The missing link is visibility: understanding what data any AI agent - sanctioned or shadow - can access, process, or send out. Data Security Posture Management (DSPM) responds to this by mapping what data AI agents can reach, tracing sensitive data to and from agents everywhere they run. Newer DSPM features such as real-time risk scoring, shadow AI discovery, and detailed flow tracking help organizations see and control risks from AI agents at the data layer (Sentra DSPM for AI agent security).

Immediate enterprise action plan: detection, mapping, and control

Security teams need to move quickly. Start by scanning for OpenClaw, MoltBot, and other shadow AI agents across endpoints, networks, and SaaS apps. Once you know where agents are, check which sensitive data they can access by using DSPM tools with AI agent awareness, such as those from Sentra (Sentra’s AI asset discovery). Treat unauthorized installations as active security incidents: reset credentials, investigate activity, and prevent agents from running on your systems following expert recommendations.

For long-term defense, add continuous shadow AI tracking to your operations. Let DSPM keep your data inventory current, trace possible leaks, and set the right controls for every workflow involving AI. Sentra gives you a single place to find all agent activity, see your actual AI data exposure, and take fast, business-aware action.

Conclusion

OpenClaw is simply the first sign of what will soon be a string of AI agent-driven security problems for enterprises. As companies use AI more to boost productivity and automate work, the chance of unsanctioned agents acting with growing privileges and integrations will continue to rise. Gartner expects that by 2028, one in four cyber incidents will stem from AI agent misuse - and attacks have already started to appear in the news.

Success with AI is no longer about whether you use agents like OpenClaw; it’s about controlling how far they reach and what they can do. Old-school defenses can’t keep up with how quickly shadow AI spreads. Only data-focused security, with total AI agent discovery, risk mapping, and ongoing monitoring, can provide the clarity and controls needed for this new world. Sentra's DSPM platform offers precisely that. Take the first steps now: identify your shadow AI risks, map out where your data can go, and make AI agent security a top priority.

<blogcta-big>

Read More
David Stuart
David Stuart
Nikki Ralston
Nikki Ralston
February 4, 2026
3
Min Read

DSPM Dirty Little Secrets: What Vendors Don’t Want You to Test

DSPM Dirty Little Secrets: What Vendors Don’t Want You to Test

Discover  What DSPM Vendors Try to Hide 

Your goal in running a data security/DSPM POV is to evaluate all important performance and cost parameters so you can make the best decision and avoid unpleasant surprises. Vendors, on the other hand, are looking for a ‘quick win’ and will often suggest shortcuts like using a limited test data set and copying your data to their environment.

 On the surface this might sound like a reasonable approach, but if you don’t test real data types and volumes in your own environment, the POV process may hide costly failures or compliance violations that will quickly become apparent in production. A recent evaluation of Sentra versus another top emerging DSPM exposed how the other solution’s performance dropped and costs skyrocketed when deployed at petabyte scale. Worse, the emerging DSPM removed data from the customer environment - a clear controls violation.

If you want to run a successful POV and avoid DSPM buyers' remorse you need to look out for these "dirty little secrets".

Dirty Little Secret #1:
‘Start small’ can mean ‘fails at scale’

The biggest 'dirty secret' is that scalability limits are hidden behind the 'start small' suggestion. Many DSPM platforms cannot scale to modern petabyte-sized data environments. Vendors try to conceal this architectural weakness by encouraging small, tightly scoped POVs that never stress the system and create false confidence. Upon broad deployment, this weakness is quickly exposed as scans slow and refresh cycles stretch, forcing teams to drastically reduce scope or frequency. This failure is fundamentally architectural, lacking parallel orchestration and elastic execution, proving that the 'start small' advice was a deliberate tactic to avoid exposing the platform’s inevitable bottleneck.In a recent POV, Sentra successfully scanned 10x more data in approximately the same time than the alternative:

Dirty Little Secret #2:
High cloud cost breaks continuous security

Another reason some vendors try to limit the scale of POVs is to hide the real cloud cost of running them in production. They often use brute-force scanning that reads excessive data, consumes massive compute resources, and is architecturally inefficient. This is easy to mask during short, limited POVs, but quickly drives up cloud bills in production. The resulting cost pressure forces organizations to reduce scan frequency and scope, quietly shifting the platform from continuous security control to periodic inventory. Ultimately, tools that cannot scale scanners efficiently on-demand or scan infrequently trade essential security for cost, proving they are only affordable when they are not fully utilized. In a recent POV run on 100 petabytes of data, Sentra proved to be 10x more operationally cost effective to run:

Dirty Little Secret #3:
‘Good enough’ accuracy degrades security

Accuracy is fundamental to Data Security Posture Management (DSPM) and should not be compromised. While a few points difference may not seem like a deal breaker, every percentage point of classification accuracy can dramatically affect all downstream security controls. Costs increase as manual intervention is required to address FPs. When organizations automate controls based on these inaccuracies, the DSPM platform becomes a source of risk. Confidence is lost. The secret is kept safe because the POV never validates the platform's accuracy against known sensitive data.

In a recent POV Sentra was able to prove less than one percent rate of false positives and false negatives:

DSPM POV Red Flags 

  • Copy data to the vendor environment for a “quick win”
  • Limit features or capabilities to simplify testing
  • Artificially reduce the size of scanned data
  • Restrict integrations to avoid “complications”
  • Limit or avoid API usage

These shortcuts don’t make a POV easier - they make it misleading.

Four DSPM POV Requirements That Expose the Truth

If you want a DSPM POV that reflects production reality, insist on these requirements:

1. Scalability

Run discovery and classification on at least 1 petabyte of real data, including unstructured object storage. Completion time must be measured in hours or days - not weeks.

2. Cost Efficiency

Operate scans continuously at scale and measure actual cloud resource consumption. If cost forces reduced frequency or scope, the model is unsustainable.

3. Accuracy

Validate results against known sensitive data. Measure false positives and false negatives explicitly. Accuracy must be quantified and repeatable.

4. Unstructured Data Depth

Test long-form, heterogeneous, real-world unstructured data including audio, video, etc. Classification must demonstrate contextual understanding, not just keyword matches.

A DSPM solution that only performs well in a limited POV will lead to painful, costly buyer’s regret. Once in production, the failures in scalability, cost efficiency, accuracy, and unstructured data depth quickly become apparent.

Getting ready to run a DSPM POV? Schedule a demo.

<blogcta-big>

Read More
David Stuart
David Stuart
January 28, 2026
3
Min Read

Data Privacy Day: Why Discovery Isn’t Enough

Data Privacy Day: Why Discovery Isn’t Enough

Data Privacy Day is a good reminder for all of us in the tech world: finding sensitive data is only the first step. But in today’s environment, data is constantly moving -across cloud platforms, SaaS applications, and AI workflows. The challenge isn’t just knowing where your sensitive data lives; it’s also understanding who or what can touch it, whether that access is still appropriate, and how it changes as systems evolve.

I’ve seen firsthand that privacy breaks down not because organizations don’t care, but because access decisions are often disconnected from how data is actually being used. You can have the best policies on paper, but if they aren’t continuously enforced, they quickly become irrelevant.

Discovery is Just the Beginning

Most organizations start with data discovery. They run scans, identify sensitive files, and map out where data lives. That’s an important first step, and it’s necessary, but it’s far from sufficient. Data is not static. It moves, it gets copied, it’s accessed by humans and machines alike. Without continuously governing that access, all the discovery work in the world won’t stop privacy incidents from happening.

The next step, and the one that matters most today, is real-time governance. That means understanding and controlling access as it happens. 

Who can touch this data? Why do they have access? Is it still needed? And crucially, how do these permissions evolve as your environment changes?

Take, for example, a contractor who needs temporary access to sensitive customer data. Or an AI workflow that processes internal HR information. If those access rights aren’t continuously reviewed and enforced, a small oversight can quickly become a significant privacy risk.

Privacy in an AI and Automation Era

AI and automation are changing the way we work with data, but they also change the privacy equation. Automated processes can move and use data in ways that are difficult to monitor manually. AI models can generate insights using sensitive information without us even realizing it. This isn’t a hypothetical scenario, it’s happening right now in organizations of all sizes.

That’s why privacy cannot be treated as a once-a-year exercise or a checkbox in an audit report. It has to be embedded into daily operations, into the way data is accessed, used, and monitored. Organizations that get this right build systems that automatically enforce policies and flag unusual access - before it becomes a problem.

Beyond Compliance: Continuous Responsibility

The companies that succeed in protecting sensitive data are those that treat privacy as a continuous responsibility, not a regulatory obligation. They don’t wait for audits or compliance reviews to take action. Instead, they embed privacy into how data is accessed, shared, and used across the organization.

This approach delivers real results. It reduces risk by catching misconfigurations before they escalate. It allows teams to work confidently with data, knowing that sensitive information is protected. And it builds trust - both internally and with customers because people know their data is being handled responsibly.

A New Mindset for Data Privacy Day

So this Data Privacy Day, I challenge organizations to think differently. The question is no longer “Do we know where our sensitive data is?” Instead, ask:

“Are we actively governing who can touch our data, every moment, everywhere it goes?”

In a world where cloud platforms, AI systems, and automated workflows touch nearly every piece of data, privacy isn’t a one-time project. It’s a continuous practice, a mindset, and a responsibility that needs to be enforced in real time.

Organizations that adopt this mindset don’t just meet compliance requirements, they gain a competitive advantage. They earn trust, strengthen security, and maintain a dynamic posture that adapts as systems and access needs evolve.

Because at the end of the day, true privacy isn’t something you achieve once a year. It’s something you maintain every day, in every process, with every decision. This Data Privacy Day, let’s commit to moving beyond discovery and audits, and make continuous data privacy the standard.

<blogcta-big>

Read More
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security. Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!

Before you go...

Get the Gartner Customers' Choice for DSPM Report

Read why 98% of users recommend Sentra.

White Gartner Peer Insights Customers' Choice 2025 badge with laurel leaves inside a speech bubble.