All Resources
In this article:
minus iconplus icon
Share the Blog

What Is Shadow Data? Examples, Risks and How to Detect It

December 27, 2023
3
Min Read
Data Security

What is Shadow Data?

Shadow data refers to any organizational data that exists outside the centralized and secured data management framework. This includes data that has been copied, backed up, or stored in a manner not subject to the organization's preferred security structure. This elusive data may not adhere to access control limitations or be visible to monitoring tools, posing a significant challenge for organizations. Shadow data is the ultimate ‘known unknown’. You know it exists, but you don’t know where it is exactly. And, more importantly, because you don’t know how sensitive the data is you can’t protect it in the event of a breach. 

You can’t protect what you don’t know.

Where Does Shadow Data Come From?

Whether it’s created inadvertently or on purpose, data that becomes shadow data is simply data in the wrong place, at the wrong time. Let's delve deeper into some common examples of where shadow data comes from:

  • Persistence of Customer Data in Development Environments:

The classic example of customer data that was copied and forgotten. When customer data gets copied into a dev environment from production, to be used as test data… But the problem starts when this duplicated data gets forgotten and never is erased or is backed up to a less secure location. So, this data was secure in its organic location, and never intended to be copied – or at least not copied and forgotten.

Unfortunately, this type of human error is common.

If this data does not get appropriately erased or backed up to a more secure location, it transforms into shadow data, susceptible to unauthorized access.

  • Decommissioned Legacy Applications:

Another common example of shadow data involves decommissioned legacy applications. Consider what becomes of historical customer data or Personally Identifiable Information (PII) when migrating to a new application. Frequently, this data is left dormant in its original storage location, lingering there until a decision is made to delete it - or not.  It may persist for a very long time, and in doing so, become increasingly invisible and a vulnerability to the organization.

  • Business Intelligence and Analysis:

Your data scientists and business analysts will make copies of production data to mine it for trends and new revenue opportunities.  They may test historic data, often housed in backups or data warehouses, to validate new business concepts and develop target opportunities.  This shadow data may not be removed or properly secured once analysis has completed and become vulnerable to misuse or leakage.

  • Migration of Data to SaaS Applications:

The migration of data to Software as a Service (SaaS) applications has become a prevalent phenomenon. In today's rapidly evolving technological landscape, employees frequently adopt SaaS solutions without formal approval from their IT departments, leading to a decentralized and unmonitored deployment of applications. This poses both opportunities and risks, as users seek streamlined workflows and enhanced productivity. On one hand, SaaS applications offer flexibility and accessibility, enabling users to access data from anywhere, anytime. On the other hand, the unregulated adoption of these applications can result in data security risks, compliance issues, and potential integration challenges.

  • Use of Local Storage by Shadow IT Applications:

Last but not least, a breeding ground for shadow data is shadow IT applications, which can be created, licensed or used without official approval (think of a script or tool developed in house to speed workflow or increase productivity). The data produced by these applications is often stored locally, evading the organization's sanctioned data management framework. This not only poses a security risk but also introduces an uncontrolled element in the data ecosystem.

Shadow Data vs Shadow IT

You're probably familiar with the term "shadow IT," referring to technology, hardware, software, or projects operating beyond the governance of your corporate IT. Initially, this posed a significant security threat to organizational data, but as awareness grew, strategies and solutions emerged to manage and control it effectively. Technological advancements, particularly the widespread adoption of cloud services, ushered in an era of data democratization. This brought numerous benefits to organizations and consumers by increasing access to valuable data, fostering opportunities, and enhancing overall effectiveness.

However, employing the cloud also means data spreads to different places, making it harder to track. We no longer have fully self-contained systems on-site. With more access comes more risk. Now, the threat of unsecured shadow data has appeared. Unlike the relatively contained risks of shadow IT, shadow data stands out as the most significant menace to your data security. 

The common questions that arise:

1. Do you know the whereabouts of your sensitive data?
2. What is this data’s security posture and what controls are applicable? 

3. Do you possess the necessary tools and resources to manage it effectively?

 

Shadow data, a prevalent yet frequently underestimated challenge, demands attention. Fortunately, there are tools and resources you can use in order to secure your data without increasing the burden on your limited staff.

Data Breach Risks Associated with Shadow Data

The risks linked to shadow data are diverse and severe, ranging from potential data exposure to compliance violations. Uncontrolled shadow data poses a threat to data security, leading to data breaches, unauthorized access, and compromise of intellectual property.

The Business Impact of Data Security Threats

Shadow data represents not only a security concern but also a significant compliance and business issue. Attackers often target shadow data as an easily accessible source of sensitive information. Compliance risks arise, especially concerning personal, financial, and healthcare data, which demands meticulous identification and remediation. Moreover, unnecessary cloud storage incurs costs, emphasizing the financial impact of shadow data on the bottom line. Businesses can return investment and reduce their cloud cost by better controlling shadow data.

As more enterprises are moving to the cloud, the concern of shadow data is increasing. Since shadow data refers to data that administrators are not aware of, the risk to the business depends on the sensitivity of the data. Customer and employee data that is improperly secured can lead to compliance violations, particularly when health or financial data is at risk. There is also the risk that company secrets can be exposed. 

An example of this is when Sentra identified a large enterprise’s source code in an open S3 bucket. Part of working with this enterprise, Sentra was given 7 Petabytes in AWS environments to scan for sensitive data. Specifically, we were looking for IP - source code, documentation, and other proprietary data. As usual, we discovered many issues, however there were 7 that needed to be remediated immediately. These 7 were defined as ‘critical’.

The most severe data vulnerability was source code in an open S3 bucket with 7.5 TB worth of data. The file was hiding in a 600 MB .zip file in another .zip file. We also found recordings of client meetings and a 8.9 KB excel file with all of their existing current and potential customer data. Unfortunately, a scenario like this could have taken months, or even years to notice - if noticed at all. Luckily, we were able to discover this in time.

How You Can Detect and Minimize the Risk Associated with Shadow Data

Strategy 1: Conduct Regular Audits

Regular audits of IT infrastructure and data flows are essential for identifying and categorizing shadow data. Understanding where sensitive data resides is the foundational step toward effective mitigation. Automating the discovery process will offload this burden and allow the organization to remain agile as cloud data grows.

Strategy 2: Educate Employees on Security Best Practices

Creating a culture of security awareness among employees is pivotal. Training programs and regular communication about data handling practices can significantly reduce the likelihood of shadow data incidents.

Strategy 3: Embrace Cloud Data Security Solutions

Investing in cloud data security solutions is essential, given the prevalence of multi-cloud environments, cloud-driven CI/CD, and the adoption of microservices. These solutions offer visibility into cloud applications, monitor data transactions, and enforce security policies to mitigate the risks associated with shadow data.

How You Can Protect Your Sensitive Data with Sentra’s DSPM Solution

The trick with shadow data, as with any security risk, is not just in identifying it – but rather prioritizing the remediation of the largest risks. Sentra’s Data Security Posture Management follows sensitive data through the cloud, helping organizations identify and automatically remediate data vulnerabilities by:

  • Finding shadow data where it’s not supposed to be:

Sentra is able to find all of your cloud data - not just the data stores you know about.

  • Finding sensitive information with differing security postures:

Finding sensitive data that doesn’t seem to have an adequate security posture.

  • Finding duplicate data:

Sentra discovers when multiple copies of data exist, tracks and monitors them across environments, and understands which parts are both sensitive and unprotected.

  • Taking access into account:

Sometimes, legitimate data can be in the right place, but accessible to the wrong people. Sentra scrutinizes privileges across multiple copies of data, identifying and helping to enforce who can access the data.

Key Takeaways

Comprehending and addressing shadow data risks is integral to a robust data security strategy. By recognizing the risks, implementing proactive detection measures, and leveraging advanced security solutions like Sentra's DSPM, organizations can fortify their defenses against the evolving threat landscape. 

Stay informed, and take the necessary steps to protect your valuable data assets.

To learn more about how Sentra can help you eliminate the risks of shadow data, schedule a demo with us today.

<blogcta-big>

Discover Ron’s expertise, shaped by over 20 years of hands-on tech and leadership experience in cybersecurity, cloud, big data, and machine learning. As a serial entrepreneur and seed investor, Ron has contributed to the success of several startups, including Axonius, Firefly, Guardio, Talon Cyber Security, and Lightricks, after founding a company acquired by Oracle.

Subscribe

Latest Blog Posts

Ariel Rimon
Ariel Rimon
Daniel Suissa
Daniel Suissa
February 16, 2026
4
Min Read

How Modern Data Security Discovers Sensitive Data at Cloud Scale

How Modern Data Security Discovers Sensitive Data at Cloud Scale

Modern cloud environments contain vast amounts of data stored in object storage services such as Amazon S3, Google Cloud Storage, and Azure Blob Storage. In large organizations, a single data store can contain billions (or even tens of billions) of objects. In this reality, traditional approaches that rely on scanning every file to detect sensitive data quickly become impractical.

Full object-level inspection is expensive, slow, and difficult to sustain over time. It increases cloud costs, extends onboarding timelines, and often fails to keep pace with continuously changing data. As a result, modern data security platforms must adopt more intelligent techniques to build accurate data inventories and sensitivity models without scanning every object.

Why Object-Level Scanning Fails at Scale

Object storage systems expose data as individual objects, but treating each object as an independent unit of analysis does not reflect how data is actually created, stored, or used.

In large environments, scanning every object introduces several challenges:

  • Cost amplification from repeated content inspection at massive scale
  • Long time to actionable insights during the first scan
  • Operational bottlenecks that prevent continuous scanning
  • Diminishing returns, as many objects contain redundant or structurally identical data

The goal of data discovery is not exhaustive inspection, but rather accurate understanding of where sensitive data exists and how it is organized.

The Dataset as the Correct Unit of Analysis

Although cloud storage presents data as individual objects, most data is logically organized into datasets. These datasets often follow consistent structural patterns such as:

  • Time-based partitions
  • Application or service-specific logs
  • Data lake tables and exports
  • Periodic reports or snapshots

For example, the following objects are separate files but collectively represent a single dataset:

logs/2026/01/01/app_events_001.json

logs/2026/01/02/app_events_002.json

logs/2026/01/03/app_events_003.json

While these objects differ by date, their structure, schema, and sensitivity characteristics are typically consistent. Treating them as a single dataset enables more accurate and scalable analysis.

Analyzing Storage Structure Without Reading Every File

Modern data discovery platforms begin by analyzing storage metadata and object structure, rather than file contents.

This includes examining:

  • Object paths and prefixes
  • Naming conventions and partition keys
  • Repeating directory patterns
  • Object counts and distribution

By identifying recurring patterns and natural boundaries in storage layouts, platforms can infer how objects relate to one another and where dataset boundaries exist. This analysis does not require reading object contents and can be performed efficiently at cloud scale.

Configurable by Design

Sampling can be disabled for specific data sources, and the dataset grouping algorithm can be adjusted by the user. This allows teams to tailor the discovery process to their environment and needs.


Automatic Grouping into Dataset-Level Assets

Using structural analysis, objects are automatically grouped into dataset-level assets. Clustering algorithms identify related objects based on path similarity, partitioning schemes, and organizational patterns. This process requires no manual configuration and adapts as new objects are added. Once grouped, these datasets become the primary unit for further analysis, replacing object-by-object inspection with a more meaningful abstraction.

Representative Sampling for Sensitivity Inference

After grouping, sensitivity analysis is performed using representative sampling. Instead of inspecting every object, the platform selects a small, statistically meaningful subset of files from each dataset.

Sampling strategies account for factors such as:

  • Partition structure
  • File size and format
  • Schema variation within the dataset

By analyzing these samples, the platform can accurately infer the presence of sensitive data across the entire dataset. This approach preserves accuracy while dramatically reducing the amount of data that must be scanned.

Handling Non-Standard Storage Layouts

In some environments, storage layouts may follow unconventional or highly customized naming schemes that automated grouping cannot fully interpret. In these cases, manual grouping provides additional precision. Security analysts can define logical dataset boundaries, often supported by LLM-assisted analysis to better understand complex or ambiguous structures. Once defined, the same sampling and inference mechanisms are applied, ensuring consistent sensitivity assessment even in edge cases.

Scalability, Cost, and Operational Impact

By combining structural analysis, grouping, and representative sampling, this approach enables:

  • Scalable data discovery across millions or billions of objects
  • Predictable and significantly reduced cloud scanning costs
  • Faster onboarding and continuous visibility as data changes
  • High confidence sensitivity models without exhaustive inspection

This model aligns with the realities of modern cloud environments, where data volume and velocity continue to increase.

From Discovery to Classification and Continuous Risk Management

Dataset-level asset discovery forms the foundation for scalable classification, access governance, and risk detection. Once assets are defined at the dataset level, classification becomes more accurate and easier to maintain over time. This enables downstream use cases such as identifying over-permissioned access, detecting risky data exposure, and managing AI-driven data access patterns.

Applying These Principles in Practice

Platforms like Sentra apply these principles to help organizations discover, classify, and govern sensitive data at cloud scale - without relying on full object-level scans. By focusing on dataset-level discovery and intelligent sampling, Sentra enables continuous visibility into sensitive data while keeping costs and operational overhead under control.

<blogcta-big>

Read More
Elie Perelman
Elie Perelman
February 12, 2026
3
Min Read

Best Data Access Governance Tools

Best Data Access Governance Tools

Managing access to sensitive information is becoming one of the most critical challenges for organizations in 2026. As data sprawls across cloud platforms, SaaS applications, and on-premises systems, enterprises face compliance violations, security breaches, and operational inefficiencies. Data Access Governance Tools provide automated discovery, classification, and access control capabilities that ensure only authorized users interact with sensitive data. This article examines the leading platforms, essential features, and implementation strategies for effective data access governance.

Best Data Access Governance Tools

The market offers several categories of solutions, each addressing different aspects of data access governance. Enterprise platforms like Collibra, Informatica Cloud Data Governance, and Atlan deliver comprehensive metadata management, automated workflows, and detailed data lineage tracking across complex data estates.

Specialized Data Access Governance (DAG) platforms focus on permissions and entitlements. Varonis, Immuta, and Securiti provide continuous permission mapping, risk analytics, and automated access reviews. Varonis identifies toxic combinations by discovering and classifying sensitive data, then correlating classifications with access controls to flag scenarios where high-sensitivity files have overly broad permissions.

User Reviews and Feedback

Varonis

  • Detailed file access analysis and real-time protection capabilities
  • Excellent at identifying toxic permission combinations
  • Learning curve during initial implementation

BigID

  • AI-powered classification with over 95% accuracy
  • Handles both structured and unstructured data effectively
  • Strong privacy automation features
  • Technical support response times could be improved

OneTrust

  • User-friendly interface and comprehensive privacy management
  • Deep integration into compliance frameworks
  • Robust feature set requires organizational support to fully leverage

Sentra

  • Effective data discovery and automation capabilities (January 2026 reviews)
  • Significantly enhances security posture and streamlines audit processes
  • Reduces cloud storage costs by approximately 20%

Critical Capabilities for Modern Data Access Governance

Effective platforms must deliver several core capabilities to address today's challenges:

Unified Visibility

Tools need comprehensive visibility across IaaS, PaaS, SaaS, and on-premises environments without moving data from its original location. This "in-environment" architecture ensures data never leaves organizational control while enabling complete governance.

Dynamic Data Movement Tracking

Advanced platforms monitor when sensitive assets flow between regions, migrate from production to development, or enter AI pipelines. This goes beyond static location mapping to provide real-time visibility into data transformations and transfers.

Automated Classification

Modern tools leverage AI and machine learning to identify sensitive data with high accuracy, then apply appropriate tags that drive downstream policy enforcement. Deep integration with native cloud security tools, particularly Microsoft Purview, enables seamless policy enforcement.

Toxic Combination Detection

Platforms must correlate data sensitivity with access permissions to identify scenarios where highly sensitive information has broad or misconfigured controls. Once detected, systems should provide remediation guidance or trigger automated actions.

Infrastructure and Integration Considerations

Deployment architecture significantly impacts governance effectiveness. Agentless solutions connecting via cloud provider APIs offer zero impact on production latency and simplified deployment. Some platforms use hybrid approaches combining agentless scanning with lightweight collectors when additional visibility is required.

Integration Area Key Considerations Example Capabilities
Microsoft Ecosystem Native integration with Microsoft Purview, Microsoft 365, and Azure Varonis monitors Copilot AI prompts and enforces consistent policies
Data Platforms Direct remediation within platforms such as Snowflake BigID automatically enforces dynamic data masking and tagging
Cloud Providers API-based scanning without performance overhead Sentra’s agentless architecture scans environments without deploying agents

Open Source Data Governance Tools

Organizations seeking cost-effective or customizable solutions can leverage open source tools. Apache Atlas, originally designed for Hadoop environments, provides mature governance capabilities that, when integrated with Apache Ranger, support tag-based policy management for flexible access control.

DataHub, developed at LinkedIn, features AI-powered metadata ingestion and role-based access control. OpenMetadata offers a unified metadata platform consolidating information across data sources with data lineage tracking and customized workflows.

While open source tools provide foundational capabilities, metadata cataloging, data lineage tracking, and basic access controls, achieving enterprise-grade governance typically requires additional customization, integration work, and infrastructure investment. The software is free, but self-hosting means accounting for operational costs and expertise needed to maintain these platforms.

Understanding the Gartner Magic Quadrant for Data Governance Tools

Gartner's Magic Quadrant assesses vendors on ability to execute and completeness of vision. For data access governance, Gartner examines how effectively platforms define, automate, and enforce policies controlling user access to data.

<blogcta-big>

Read More
Yair Cohen
Yair Cohen
February 11, 2026
4
Min Read

DSPM vs DLP vs DDR: How to Architect a Data‑First Stack That Actually Stops Exfiltration

DSPM vs DLP vs DDR: How to Architect a Data‑First Stack That Actually Stops Exfiltration

Many security stacks look impressive at first glance. There is a DLP agent on every endpoint, a CASB or SSE proxy watching SaaS traffic, EDR and SIEM for hosts and logs, and perhaps a handful of identity and access governance tools. Yet when a serious incident is investigated, it often turns out that sensitive data moved through a path nobody was really watching, or that multiple tools saw fragments of the story but never connected them.

The common thread is that most stacks were built around infrastructure, not data. They understand networks, workloads, and log lines, but they don’t share a single, consistent understanding of:

  • What your sensitive data is
  • Where it actually lives
  • Who and what can access it
  • How it moves across cloud, SaaS, and AI systems

To move beyond that, security leaders are converging on a data‑first architecture that brings together four capabilities: DSPM (Data Security Posture Management), DLP (Data Loss Prevention), DAG (Data Access Governance), and DDR (Data Detection & Response) in a unified model.

Clarifying the Roles

At the heart of this architecture is DSPM. DSPM is your data‑at‑rest intelligence layer. It continuously discovers data across clouds, SaaS, on‑prem, and AI pipelines, classifies it, and maps its posture; configurations, locations, access paths, and regulatory obligations. Instead of a static inventory, you get a living view of where sensitive data resides and how risky it is.

DLP sits at the edges of the system. Its job is to enforce policy on data in motion and in use: emails leaving the organization, files uploaded to the web, documents synced to endpoints, content copied into SaaS apps, or responses generated by AI tools. DLP decides whether to block, encrypt, quarantine, or simply log based on policies and the context it receives.

DAG bridges the gap between “what” and “who.” It’s responsible for least‑privilege access; understanding which human and machine identities can access which datasets, whether they really need that access, and what toxic combinations exist when sensitive data is exposed to broad groups or powerful service accounts.

DDR closes the loop. It monitors access to and movement of sensitive data in real time, looking for unusual or risky behavior: anomalous downloads, mass exports, unusual cross‑region copies, suspicious AI usage. When something looks wrong, DDR triggers detections, enriches them with data context, and kicks off remediation workflows.

When these four functions work together, you get a stack that doesn’t just warn you about potential issues; it actively reduces your exposure and stops exfiltration in motion.

Why “DSPM vs DLP” Is the Wrong Framing

It’s tempting to think of DSPM and DLP as competing answers to the same problem. In reality, they address different parts of the lifecycle. DSPM shows you what’s at risk and where; DLP controls how that risk can materialize as data moves.

Trying to use DLP as a discovery and classification engine is what leads to the noise and blind spots described in the previous section. Conversely, running DSPM without any enforcement at the edges leaves you with excellent visibility but too little control over where data can go.

DSPM and DAG reduce your attack surface; DLP and DDR reduce your blast radius. DSPM and DAG shrink the pool of exposed data and over‑privileged identities. DLP and DDR watch the edges and intervene when data starts to move in risky ways.

A Unified, Data‑First Reference Architecture

In a data‑first architecture, DSPM sits at the center, connected API‑first into cloud accounts, SaaS platforms, data warehouses, on‑prem file systems, and AI infrastructure. It continuously updates an inventory of data assets, understands which are sensitive or regulated, and applies labels and context that other tools can use.

On top of that, DAG analyzes which users, groups, service principals, and AI agents can access each dataset. Over‑privileged access is identified and remediated, sometimes automatically: by tightening IAM roles, restricting sharing, or revoking legacy permissions. The result is a significant reduction in the number of places where a single identity can cause significant damage.

DLP then reads the labels and access context from DSPM and DAG instead of inferring everything from scratch. Email and endpoint DLP, cloud DLP via SSE/CASB, and even platform‑native solutions like Purview DLP all begin enforcing on the same sensitivity definitions and labels. Policies become more straightforward: “Block Highly Confidential outside the tenant,” “Encrypt PHI sent to external partners,” “Require justification for Customer‑Identifiable data leaving a certain region.”

DDR runs alongside this, monitoring how labeled data actually moves. It can see when a typically quiet user suddenly downloads thousands of PHI records, when a service account starts copying IP into a new data store, or when an AI tool begins interacting with a dataset marked off‑limits. Because DDR is fed by DSPM’s inventory and DAG’s access graph, detections are both higher fidelity and easier to interpret.

From there, integration points into SIEM, SOAR, IAM/CIEM, ITSM, and AI gateways allow you to orchestrate end‑to‑end responses: open tickets, notify owners, roll back risky changes, block certain actions, or update policies.

Where Sentra Fits

Sentra’s product vision aligns directly with this data‑first model. Rather than treating DSPM, DAG, DDR, and DLP intelligence as separate products, Sentra brings them together into a single, cloud‑native data security platform.

That means you get:

  • DSPM that discovers and classifies data across cloud, SaaS, on‑prem, and AI
  • DAG that maps and rationalizes access to that data
  • DDR that monitors sensitive data in motion and detects threats
  • Integrations that feed this intelligence into DLP, SSE/CASB, Purview, EDR, and other controls

In other words, Sentra is positioned as the brain of the data‑first stack, giving DLP and the rest of your security stack the insight they need to actually stop exfiltration, not just report on it afterward.

<blogcta-big>

Read More
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security. Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!

Before you go...

Get the Gartner Customers' Choice for DSPM Report

Read why 98% of users recommend Sentra.

White Gartner Peer Insights Customers' Choice 2025 badge with laurel leaves inside a speech bubble.