All Resources
In this article:
minus iconplus icon
Share the Article

Create an Effective RFP for a Data Security Platform & DSPM

December 26, 2024
5
 Min Read
Data Security

This RFP Guide is designed to help organizations create their own RFP for selection of Cloud-native Data Security Platform (DSP) & Data Security Posture Management (DSPM) solutions. The purpose is to identify key essential requirements  that will enable effective discovery, classification, and protection of sensitive data across complex environments, including in public cloud infrastructures and in on-premises environments.

Instructions for Vendors

Each section provides essential and recommended requirements to achieve a best practice capability. These have been accumulated over dozens of customer implementations.  Customers may also wish to include their own unique requirements specific to their industry or data environment.

1. Data Discovery & Classification

Requirement Details
Shadow Data Detection Can the solution discover and identify shadow data across any data environment (IaaS, PaaS, SaaS, OnPrem)?
Sensitive Data Classification Can the solution accurately classify sensitive data, including PII, financial data, and healthcare data?
Efficient Scanning Does the solution support smart sampling of large file shares and data lakes to reduce and optimize the cost of scanning, yet provide full scan coverage in less time and lower cloud compute costs?
AI-based Classification Does the solution leverage AI/ML to classify data in unstructured documents and stores (Google Drive, OneDrive, SharePoint, etc) and achieve more than 95% accuracy?
Data Context Can the solution discern and ‘learn’ the business purpose (employee data, customer data, identifiable data subjects, legal data, synthetic data, etc.) of data elements and tag them accordingly?
Data Store Compatibility Which data stores (e.g., AWS S3, Google Cloud Storage, Azure SQL, Snowflake data warehouse, On Premises file shares, etc.) does the solution support for discovery?
Autonomous Discovery Can the solution discover sensitive data automatically and continuously, ensuring up to date awareness of data presence?
Data Perimeters Monitoring Can the solution track data movement between storage solutions and detect risky and non-compliant data transfers and data sprawl?

2. Data Access Governance

Requirement Details
Access Controls Does the solution map access of users and non-human identities to data based on sensitivity and sensitive information types?
Location Independent Control Does the solution help organizations apply least privilege access regardless of data location or movement?
Identity Activity Monitoring Does the solution identify over-provisioned, unused or abandoned identities (users, keys, secrets) that create unnecessary exposures?
Data Access Catalog Does the solution provide an intuitive map of identities, their access entitlements (read/write permissions), and the sensitive data they can access?
Integration with IAM Providers Does the solution integrate with existing Identity and Access Management (IAM) systems?

3. Posture, Risk Assessment & Threat Monitoring

Requirement Details
Risk Assessment Can the solution assess data security risks and assign risk scores based on data exposure and data sensitivity?
Compliance Frameworks Does the solution support compliance with regulatory requirements such as GDPR, CCPA, and HIPAA?
Similar Data Detection Does the solution identify data that has been copied, moved, transformed or otherwise modified that may disguise its sensitivity or lessen its security posture?
Automated Alerts Does the solution provide automated alerts for policy violations and potential data breaches?
Data Loss Prevention (DLP) Does the solution include DLP features to prevent unauthorized data exfiltration?
3rd Party Data Loss Prevention (DLP) Does the solution integrate with 3rd party DLP solutions?
User Behavior Monitoring Does the solution track and analyze user behaviors to identify potential insider threats or malicious activity?
Anomaly Detection Does the solution establish a baseline and use machine learning or AI to detect anomalies in data access or movement?

4. Incident Response & Remediation

Requirement Details
Incident Management Can the solution provide detailed reports, alert details, and activity/change history logs for incident investigation?
Automated Response Does the solution support automated incident response, such as blocking malicious users or stopping unauthorized data flows (via API integration to native cloud tools or other)?
Forensic Capabilities Can the solution facilitate forensic investigation, such as data access trails and root cause analysis?
Integration with SIEM Can the solution integrate with existing Security Information and Event Management (SIEM) or other analysis systems?

5. Infrastructure & Deployment

Requirement Details
Deployment Models Does the solution support flexible deployment models (on-premise, cloud, hybrid)? Is the solution agentless?
Cloud Native Does the solution keep all data in the customer’s environment, performing classification via serverless functions? (ie. no data is ever removed from customer environment - only metadata)
Scalability Can the solution scale to meet the demands of large enterprises with multi-petabyte data volumes?
Performance Impact Does the solution work asynchronously without performance impact on the data production environment?
Multi-Cloud Support Does the solution provide unified visibility and management across multiple cloud providers and hybrid environments?

6. Operations & Support

Requirement Details
Onboarding Does the solution vendor assist customers with onboarding? Does this include assistance with customization of policies, classifiers, or other settings?
24/7 Support Does the vendor provide 24/7 support for addressing urgent security issues?
Training & Documentation Does the vendor provide training and detailed documentation for implementation and operation?
Managed Services Does the vendor (or its partners) offer managed services for organizations without dedicated security teams?
Integration with Security Tools Can the solution integrate with existing security tools, such as firewalls, DLP systems, and endpoint protection systems?

7. Pricing & Licensing

Requirement Details
Pricing Model What is the pricing structure (e.g., per user, per GB, per endpoint)?
Licensing What licensing options are available (e.g., subscription, perpetual)?
Additional Costs Are there additional costs for support, maintenance, or feature upgrades?

Conclusion

This RFP template is designed to facilitate a structured and efficient evaluation of DSP and DSPM solutions. Vendors are encouraged to provide comprehensive and transparent responses to ensure an accurate assessment of their solution’s capabilities.

Sentra’s cloud-native design combines powerful Data Discovery and Classification, DSPM, DAG, and DDR capabilities into a complete Data Security Platform (DSP). With this, Sentra customers achieve enterprise-scale data protection and do so very efficiently - without creating undue burdens on the personnel who must manage it.

To learn more about Sentra’s DSP, request a demo here and choose a time for a meeting with our data security experts. You can also choose to download the RFP as a pdf.

Read insightful articles by the Sentra team about different topics, such as, preventing data breaches, securing sensitive data, and more.

Subscribe

Latest Blog Posts

Ron Reiter
Ron Reiter
February 12, 2026
5
Min Read

How to Build a Modern DLP Strategy That Actually Works: DSPM + Endpoint + Cloud DLP

How to Build a Modern DLP Strategy That Actually Works: DSPM + Endpoint + Cloud DLP

Most data loss prevention (DLP) programs don’t fail because DLP tools can’t block an email or stop a file upload. They fail because the DLP strategy and architecture start with enforcement and agents instead of with data intelligence.

If you begin with rules and agents, you’ll usually end up where many enterprises already are:

  • A flood of false positives
  • Blind spots in cloud and SaaS
  • Users who quickly learn how to route around controls
  • A DLP deployment that slowly gets dialed down into “monitor‑only” mode

A modern DLP strategy flips this model. It’s built on three tightly integrated components:

  1. DSPM (Data Security Posture Management) – the data‑centric brain that discovers and classifies data everywhere, labels it, and orchestrates remediation at the source.
  2. Endpoint DLP – the in‑use and egress enforcement layer on laptops and workstations that tracks how sensitive data moves to and from endpoints and actively prevents loss.
  3. Network and cloud security (Cloud DLP / SSE/CASB) – the in‑transit control plane that observes and governs how data moves between data stores, across clouds, and between endpoints and the internet.

Get these three components right and make DSPM the intelligence layer feeding the other two and your DLP stops being a noisy checkbox exercise and starts behaving like a real control.

Why Traditional DLP Fails

Traditional DLP started from the edges: install agents, deploy gateways, enable a few content rules, and hope you can tune your way out of the noise. That made sense when most sensitive data was in a few databases and file servers, and most traffic went through a handful of channels.

Today, sensitive data sprawls across:

  • Multiple public clouds and regions
  • SaaS platforms and collaboration suites
  • Data lakes, warehouses, and analytics platforms
  • AI models, copilots, and agents consuming that data

Trying to manage DLP purely from traffic in motion is like trying to run identity solely from web server logs. You see fragments of behavior, but you don’t know what the underlying assets are, how risky they are, or who truly needs access.

A modern DLP architecture starts from the data itself.

Component 1 – DSPM: The Brain of Your DLP Strategy

What is DSPM and how does it power modern DLP?

Data Security Posture Management (DSPM) is the foundation of a modern DLP program. Instead of trying to infer everything from traffic, you start by answering four basic questions about your data:

  • What data do we have?
  • Where does it live (cloud, SaaS, on‑prem, backups, data lakes)?
  • Who can access it, and how is it used?
  • How sensitive is it, in business and regulatory terms?

A mature DSPM platform gives you more than just a catalog. It delivers:

Comprehensive discovery. It scans across IaaS, PaaS, DBaaS, SaaS, and on‑prem file systems, including “shadow” databases, orphaned snapshots, forgotten file shares, and legacy stores that never made it into your CMDB. You get a real‑time, unified view of your data estate, not just what individual teams remember to register.

Accurate, contextual classification. Instead of relying on regex alone, DSPM combines pattern‑based detection (for PII, PCI, PHI), schema‑aware logic for structured data, and AI/LLM‑driven classification for unstructured content, images, audio, and proprietary data. That means it understands both what the data is and why it matters to the business.

Unified sensitivity labeling. DSPM can automatically apply or update sensitivity labels across systems, for example, Microsoft Purview Information Protection (MPIP) labels in M365, or Google Drive labels, so that downstream DLP controls see a consistent, high‑quality signal instead of a patchwork of manual tags.

Data‑first access context. By building an authorization graph that shows which users, roles, services, and external principals can reach sensitive data across clouds and SaaS, DSPM reveals over‑privileged access and toxic combinations long before an incident.

Policy‑driven remediation at the source. DSPM isn’t just read‑only. It can auto‑revoke public shares, tighten labels, move or delete stale data, and trigger tickets and workflows in ITSM/SOAR systems to systematically reduce risk at rest.

In a DLP plan, DSPM is the intelligence and control layer for data at rest. It discovers, classifies, labels, and remediates issues at the source, then feeds rich context into endpoint DLP agents and network controls.

That’s the role you want DLP to have a brain for and it’s why DSPM should come first.

Component 2 – Endpoint DLP: Data in Use and Leaving the Org

What is Endpoint DLP and why isn’t it enough on its own?

Even with good posture in your data stores, a huge amount of risk is introduced at endpoints when users:

  • Copy sensitive data into personal email or messaging apps
  • Upload confidential documents to unsanctioned SaaS tools
  • Save regulated data to local disks and USB drives
  • Take screenshots, copy and paste, or print sensitive content

An Endpoint DLP agent gives you visibility and control over data in use and data leaving the org from user devices.

A well‑designed Endpoint DLP layer should offer:

Rich data lineage. The agent should track how a labeled or classified file moves from trusted data stores (S3, SharePoint, Snowflake, Google Drive, Jira, etc.) to the endpoint, and from there into email, browsers, removable media, local apps, and sync folders. That lineage is essential for both investigation and policy design.

Channel‑aware controls. Endpoints handle many channels: web uploads and downloads, email clients, local file operations, removable media, virtual drives, sync tools like Dropbox and Box. You need policies tailored to these different paths, not a single blunt rule that treats them all the same.

Active prevention and user coaching. Logging is useful, but modern DLP requires the ability to block prohibited transfers (for example, Highly Confidential data to personal webmail), quarantine or encrypt files when risk conditions are met, and present user coaching dialogs that explain why an action is risky and how to do it safely instead.

The most critical design decision is to drive endpoint DLP from DSPM intelligence instead of duplicating classification logic on every laptop. DSPM discovers and labels sensitive content at the data source. When that content is synced or downloaded to an endpoint, files carry their sensitivity labels and metadata with them. The endpoint agent then uses those labels, plus local context like user, device posture, network, and destination, to enforce simple, reliable policies.

That’s far more scalable than asking every agent to rediscover and reclassify all the data it sees.

Component 3 – Network & Cloud Security: Data in Transit

The third leg of a good DLP plan is your network and cloud security layer, typically built from:

  • SSE/CASB and secure web gateways controlling access to SaaS apps and web destinations
  • Email security and gateways inspecting outbound messages and attachments
  • Cloud‑native proxies and API security governing data flows between apps, services, and APIs

Their role in DLP is to observe and govern data in transit:

  • Between cloud data stores (e.g., S3 to external SaaS)
  • Between clouds (AWS ↔ GCP ↔ Azure)
  • Between endpoints and internet destinations (uploads, downloads, webmail, file sharing, genAI tools)

They also enforce inline policies such as:

  • Blocking uploads of “Restricted” data to unapproved SaaS
  • Stripping or encrypting sensitive attachments
  • Requiring step‑up authentication or justification for high‑risk transfers

Again, the key is to feed these controls with DSPM labels and context, not generic heuristics. SSE/CASB and network DLP should treat MPIP or similar labels, along with DSPM metadata (data category, regulation, owner, residency), as primary policy inputs. Email gateways should respect a document already labeled “Highly Confidential – Finance – PCI” as a first‑class signal, rather than trying to re‑guess its contents from scratch. Cloud DLP and Data Detection & Response (DDR) should correlate network events with your data inventory so they can distinguish real exfiltration from legitimate flows.

When network and cloud security speak the same data language as DSPM and endpoint DLP, “data in transit” controls become both more accurate and easier to justify.

How DSPM, Endpoint DLP, and Cloud DLP Work Together

Think of the architecture like this:

  • DSPM (Sentra) – “Know and label.” It discovers all data stores (cloud, SaaS, on‑prem), classifies content with high accuracy, applies and manages sensitivity labels, and scores risk at the source.
  • Endpoint DLP – “Control data in use.” It reads labels and metadata on files as they reach endpoints, tracks lineage (which labeled data moved where, via which channels), and blocks, encrypts, or coaches when users attempt risky transfers.
  • Network / Cloud security – “Control data in transit.” It uses the same labels and DSPM context for inline decisions across web, SaaS, APIs, and email, monitors for suspicious flows and exfil paths, and feeds events into SIEM/SOAR with full data context for rapid response.

Your SOC and IR teams then operate on unified signals, for example:

  • A user’s endpoint attempts to upload a file labeled “Restricted – EU PII” to an unsanctioned AI SaaS from an unmanaged network.
  • An API integration is continuously syncing highly confidential documents to a third‑party SaaS that sits outside approved data residency.

This is DLP with context, not just strings‑in‑a‑packet. Each component does what it’s best at, and all three are anchored by the same DSPM intelligence.

Designing Real‑World DLP Policies

Once the three components are aligned, you can design professional‑grade, real‑world DLP policies that map directly to business risk, regulation, and AI use cases.

Regulatory protection (PII, PHI, PCI, financial data)

Here, DSPM defines the ground truth. It discovers and classifies all regulated data and tags it with labels like PII – EU, PHI – US, PCI – Global, including residency and business unit.

Endpoint DLP then enforces straightforward behaviors: block copying PII – EU from corporate shares to personal cloud storage or webmail, require encryption when PHI – US is written to removable media, and coach users when they attempt edge‑case actions.

Network and cloud security systems use the same labels to prevent PCI – Global from being sent to domains outside a vetted allow‑list, and to enforce appropriate residency rules in email and SSE based on those tags.

Because everyone is working from the same labeled view of data, you avoid the policy drift and inconsistent exceptions that plague purely pattern‑based DLP.

Insider risk and data exfiltration

DSPM and DDR are responsible for spotting anomalous access to highly sensitive data: sudden spikes in downloads, first‑time access to critical stores, or off‑hours activity that doesn’t match normal behavior.

Endpoint DLP can respond by blocking bulk uploads of Restricted – IP documents to personal cloud or genAI tools, and by triggering just‑in‑time training when a user repeatedly attempts risky actions.

Network security layers alert when large volumes of highly sensitive data flow to unusual SaaS tenants or regions, and can integrate with IAM to automatically revoke or tighten access when exfiltration patterns are detected.

The result is a coherent insider‑risk story: you’re not just counting alerts; you’re reducing the opportunity and impact of insider‑driven data loss.

Secure and responsible AI / Copilots

Modern DLP strategies must account for AI and copilots as first‑class actors.

DSPM’s job is to identify which datasets feed AI models, copilots, and knowledge bases, and to classify and label them according to regulatory and business sensitivity. That includes training sets, feature stores, RAG indexes, and prompt logs.

Endpoint DLP can prevent users from pasting Restricted – Customer Data directly into unmanaged AI assistants. Network and cloud security can use SSE/CASB to control which AI services are allowed to see which labeled data, and apply DLP rules on prompt and response streams so sensitive information is not surfaced to broader audiences than policy allows.

This is where a platform like Sentra’s data security for AI, and its integrations with Microsoft Copilot, Bedrock agents, and similar ecosystems, becomes essential: AI can still move fast on the right data, while DLP ensures it doesn’t leak the wrong data.

A Pragmatic 90‑Day Plan to Stand Up a Modern DLP Program

If you’re rebooting or modernizing DLP, you don’t need a multi‑year overhaul before you see value. Here’s a realistic 90‑day roadmap anchored on the three components.

Days 0–30: Establish the data foundation (DSPM)

In the first month, focus on visibility and clarity:

  • Define your top 5–10 protection outcomes (for example, “no EU PII outside approved regions or apps,” “protect IP design docs from external leakage,” “enable safe Copilot usage”).
  • Deploy DSPM across your primary cloud, SaaS, and key on‑prem data sources.
  • Build an inventory showing where regulated and business‑critical data lives, who can access it, and how exposed it is today (public links, open shares, stale copies, shadow stores).
  • Turn on initial sensitivity labeling and tags (MPIP, Google labels, or equivalent) so other controls can start consuming a consistent signal.

Days 30–60: Integrate and calibrate DLP enforcement planes

Next, connect intelligence to enforcement and learn how policies behave:

  • Integrate DSPM with endpoint DLP so labels and classifications are visible at the endpoint.
  • Integrate DSPM with M365 / Google Workspace DLP, SSE/CASB, and email gateways so network and SaaS enforcement can use the same labels and context.
  • Design a small set of policies per plane, aligned to your prioritized outcomes, for example, label‑based blocking on endpoints, upload and sharing rules in SSE, and auto‑revocation of risky SaaS sharing.
  • Run these policies in monitor / audit mode first. Measure both false‑positive and false‑negative rates, and iterate on scopes, classifiers, and exceptions with input from business stakeholders.

Days 60–90: Turn on prevention and operationalize

In the final month, begin enforcing and treating DLP as a living system:

  • Move the cleanest, most clearly justified policies into enforce mode (blocking, quarantining, or auto‑remediation), starting with the highest‑risk scenarios.
  • Formalize ownership across Security, Privacy, IT, and key business units so it’s always clear who tunes what.
  • Define runbooks that spell out who does what when a DLP rule fires, and how quickly.
  • Track metrics that matter: reduction in over‑exposed sensitive data, time‑to‑remediate, coverage of high‑value data stores, and for AI the number of agents with access to regulated data and their posture over time.
  • Use insights from early incidents to tighten IAM and access governance (DAG), improve classification and labels where business reality differs from assumptions, and expand coverage to additional data sources and AI workloads.

By the end of 90 days, you should have a functioning modern DLP architecture: DSPM as the data‑centric brain, endpoint DLP and cloud DLP as coordinated enforcement planes, and a feedback loop that keeps improving posture over time.

Closing Thoughts

A good DLP plan is not just an endpoint agent, not just a network gateway, and not just a cloud discovery tool. It’s the combination of:

  • DSPM as the data‑centric brain
  • Endpoint DLP as the in‑use enforcement layer
  • Network and cloud security as the in‑transit enforcement layer

 - all speaking the same language of labels, classifications, and business context.

That’s the architecture we see working in real, complex environments: use a platform like Sentra to know and label your data accurately at cloud scale, and let your DLP and network controls do what they do best, now with the intelligence they always needed.

For CISOs, the takeaway is simple: treat DSPM as the brain of your modern DLP strategy, and the tools you already own will finally start behaving like the DLP architecture you were promised.

<blogcta-big>

Read More
Meitar Ghuy
Meitar Ghuy
February 10, 2026
4
Min Read

How to Secure Data in Snowflake

How to Secure Data in Snowflake

Snowflake has become one of the most widely adopted cloud data platforms, enabling organizations to store, process, and analyze massive volumes of data at scale. As enterprises increasingly rely on Snowflake for mission-critical workloads, including AI and machine learning initiatives, understanding how to secure data in Snowflake has never been more important. With sensitive information ranging from customer PII to financial records residing in cloud environments, implementing a comprehensive security strategy is essential to protect against unauthorized access, data breaches, and compliance violations. This guide explores the practical steps and best practices for securing your Snowflake environment in 2026.

Security Layer Key Features
Authentication Multi-factor authentication (MFA), single sign-on (SSO), federated identity, OAuth
Access Control Role-based access control (RBAC), row-level security, dynamic data masking
Network Security IP allowlisting, private connectivity, VPN and VPC isolation
Data Protection Encryption at rest and in transit, data tagging and classification
Monitoring Audit logging, anomaly detection, continuous monitoring

How to Secure Data in Snowflake Server

Securing data in a Snowflake server environment requires a layered, end-to-end approach that addresses every stage of the data lifecycle.

Authentication and Identity Management

The foundation begins with strong authentication. Organizations should enforce multifactor authentication (MFA) for all user accounts and leverage single sign-on (SSO) or federated identity providers to centralize user verification. For programmatic access, key-pair authentication, OAuth, and workload identity federation provide secure alternatives to traditional credentials. Integrating with centralized identity management systems through SCIM ensures that user provisioning remains current and access rights are automatically updated as roles change.

Network Security

Implement network policies that restrict inbound and outbound traffic through IP whitelisting or VPN/VPC configurations to significantly reduce your attack surface. Private connectivity channels should be used for both inbound access and outbound connections to external stages and Snowpipe automation, minimizing exposure to public networks.

Granular Access Controls

Role-based access control (RBAC) should be implemented across all layers, account, database, schema, and table, to ensure users receive only the permissions they require. Column- and row-level security features, including secure views, dynamic data masking, and row access policies, limit exposure of sensitive data within larger datasets. Consider segregating sensitive or region-specific information into dedicated accounts or databases to meet compliance requirements.

Data Classification and Encryption

Snowflake's tagging capabilities enable organizations to mark sensitive data with labels such as "PII" or "confidential," making it easier to identify, audit, and manage. A centralized tag library maintains consistent classification and helps enforce additional security actions such as dynamic masking or targeted auditing. Encryption protects data both at rest and in transit by default, though organizations with stringent security requirements may implement additional application-level encryption or custom key management practices.

Snowflake Security Best Practices

Implementing security best practices in Snowflake requires a comprehensive strategy that spans identity management, network security, encryption, and continuous monitoring.

  • Enforce MFA for all accounts and employ federated authentication or SSO where possible
  • Implement robust RBAC ensuring both human users and non-human identities have only required privileges
  • Rotate credentials regularly for service accounts and API keys, and promptly remove stale or unused accounts
  • Define strict network security policies that block access from unauthorized IP addresses
  • Use private connectivity options to keep data ingress and egress within controlled channels
  • Enable continuous monitoring and auditing to track user activities and detect suspicious behavior early

By adopting a defense-in-depth strategy that combines multiple controls across the network perimeter, user interactions, and data management, organizations create a resilient environment that reduces the risk of breaches.

Secure Data Sharing in Snowflake

Snowflake's Secure Data Sharing capabilities enable organizations to expose carefully controlled subsets of data without moving or copying the underlying information. This architecture is particularly valuable when collaborating with external partners or sharing data across business units while maintaining strict security controls.

How Data Sharing Works

Organizations create a dedicated share using the CREATE SHARE command, including only specifically chosen database objects such as secure views, secure materialized views, or secure tables where sensitive columns can be filtered or masked. The shared objects become read-only in the consumer account, ensuring that data remains unaltered. Data consumers access the live version through metadata pointers, meaning the data stays in the provider's account and isn't duplicated or physically moved.

Security Controls for Shared Data

  • Use secure views or apply table policies to filter or mask sensitive information before sharing
  • Grant privileges through dedicated database roles only to approved subsets of data
  • Implement Snowflake Data Clean Rooms to define allowed operations, ensuring consumers obtain only aggregated or permitted results
  • Maintain provider control to revoke access to a share or specific objects at any time

This combination of techniques enables secure collaboration while maintaining complete control over sensitive information.

Enhancing Snowflake Security with Data Security Posture Management

While Snowflake provides robust native security features, organizations managing petabyte-scale environments often require additional visibility and control. Modern Data Security Posture Management (DSPM) platforms like Sentra complement Snowflake's built-in capabilities by discovering and governing sensitive data at petabyte scale inside your own environment, ensuring data never leaves your control.

Key Capabilities: Sentra tracks data movement beyond static location, monitoring when sensitive assets flow between regions, environments, or into AI pipelines. This is particularly valuable in Snowflake environments where data is frequently replicated, transformed, or shared across multiple databases and accounts.

Sentra identifies "toxic combinations" where high-sensitivity data sits behind broad or over-permissioned access controls, helping security teams prioritize remediation efforts. The platform's classification engine distinguishes between mock data and real sensitive data to prevent false positives in development environments, a common challenge when securing large Snowflake deployments with multiple testing and staging environments.

What Users Like:

  • Fast and accurate classification capabilities
  • Automation and reporting that enhance security posture
  • Improved data visibility and audit processes
  • Contextual risk insights that prioritize remediation

User Considerations:

  • Initial learning curve with the dashboard

User reviews from January 2026 highlight Sentra's effectiveness in real-world deployments, with organizations praising its ability to provide comprehensive visibility and automated governance needed to protect sensitive data at scale. By eliminating shadow and redundant data, Sentra not only secures organizations for the AI era but also typically reduces cloud storage costs by approximately 20%.

Defining a Robust Snowflake Security Policy

A comprehensive Snowflake security policy should address multiple dimensions of data protection, from access controls to compliance requirements.

Policy Component Key Requirements
Identity & Authentication Mandate multi-factor authentication (MFA) for all users, define acceptable authentication methods, and establish a least-privilege access model
Network Security Specify permitted IP addresses and ranges, and define private connectivity requirements for access to sensitive data
Data Classification Establish data tagging standards and specify required security controls for each classification level
Encryption & Key Management Document encryption requirements and define additional key management practices beyond default configurations
Data Retention Specify retention periods and deletion procedures to meet GDPR, HIPAA, or other regulatory compliance requirements
Monitoring & Incident Response Define alert triggers, notification recipients, and investigation and response procedures
Data Sharing Protocols Specify approval processes, acceptable use cases, and required security controls for external data sharing

Regular policy reviews ensure that security standards evolve with changing threats and business requirements. Schedule access reviews to identify and remove excessive privileges or dormant accounts.

Understanding Snowflake Security Certifications

Snowflake holds multiple security certifications that demonstrate its commitment to data protection and compliance with industry standards. Understanding what these certifications mean helps organizations assess whether Snowflake aligns with their security and regulatory requirements.

  • SOC 2 Type II: Verifies appropriate controls for security, availability, processing integrity, confidentiality, and privacy
  • ISO 27001: Internationally recognized standard for information security management systems
  • HIPAA: Compliance for healthcare data with specific technical and administrative controls
  • PCI DSS: Standards for payment card information security
  • FedRAMP: Authorization for U.S. government agencies
  • GDPR: European data protection compliance with data residency controls and processing agreements

While Snowflake maintains these certifications, organizations remain responsible for configuring their Snowflake environments appropriately and implementing their own security controls to achieve full compliance.

As we move through 2026, securing data in Snowflake remains a critical priority for organizations leveraging cloud data platforms for analytics, AI, and business intelligence. By implementing the comprehensive security practices outlined in this guide, from strong authentication and granular access controls to data classification, encryption, and continuous monitoring, organizations can protect their sensitive data while maintaining the performance and flexibility that make Snowflake so valuable. Whether you're implementing native Snowflake security features or enhancing them with complementary DSPM solutions, the key is adopting a layered, defense-in-depth approach that addresses security at every level.

<blogcta-big>

Read More
Noa Sheffer
Noa Sheffer
February 9, 2026
5
Min Read

Automated Data Classification: The Foundation for Scalable Data Security, Privacy, and AI Governance

Automated Data Classification: The Foundation for Scalable Data Security, Privacy, and AI Governance

Organizations face an unprecedented challenge: data volumes are exploding, cyber threats are evolving rapidly, and regulatory frameworks demand stricter compliance. Traditional manual approaches to identifying and categorizing sensitive information cannot keep pace with petabyte-scale environments spanning cloud applications, databases, and collaboration platforms. Automated Data Classification has emerged as the essential solution, leveraging machine learning and natural language processing to understand context, accurately distinguish sensitive data from routine content, and apply protective measures at scale.

Why Automated Data Classification Matters Now

The digital landscape has fundamentally changed. Organizations generate enormous amounts of information across diverse platforms, and the sophistication of cyber threats has outgrown traditional manual methods. Modern automated systems use advanced algorithms to understand the context and real meaning of data rather than relying on static rule-based approaches.

This contextual awareness allows these systems to accurately differentiate sensitive content, such as personally identifiable information (PII), financial records, medical information, or confidential business documents, from less critical data. The precision and efficiency delivered by automated classification are crucial for:

  • Strengthening cybersecurity defenses: Automated systems continuously monitor data environments, identifying sensitive information in real time and enabling faster incident response.
  • Meeting regulatory requirements: Compliance frameworks like GDPR, HIPAA, and CCPA demand accurate identification and protection of sensitive data, which manual processes struggle to deliver consistently.
  • Reducing operational burden: By automatically updating sensitivity labels and integrating with other security systems, automated classification relieves IT teams from error-prone manual processes.
  • Enabling scalability: As data volumes grow exponentially, only efficient, automated approaches can maintain comprehensive visibility and control across the entire data estate.

Discovery: You Can't Classify What You Can't Find

Discovery lays the groundwork for accurate classification by identifying what data exists and where it resides. This initial step collects real-time details about sensitive data, its location in databases, cloud environments, shadow repositories, or collaboration platforms, which is fundamental for any subsequent classification effort.

Without systematic discovery, organizations face critical challenges:

  • Blind spots in security posture: Unknown data repositories cannot be protected, creating vulnerabilities that attackers can exploit.
  • Compliance gaps: Regulators expect organizations to know where sensitive data lives; discovery failures lead to audit findings and potential penalties.
  • Shadow data proliferation: Employees create and store sensitive data in unsanctioned locations, which remain invisible to traditional discovery methods.

Modern discovery capabilities leverage cloud-native architectures to scan petabyte-scale environments without requiring data to leave the organization's control. These systems identify structured data in databases, unstructured content in file shares, and semi-structured information in logs and APIs. For organizations seeking to understand the fundamentals, exploring what is data classification provides essential context for building a comprehensive data security strategy.

Classification: Accuracy Is Non-Negotiable

Accuracy forms the essential foundation of any data classification system because it directly determines whether protective measures are applied to the right data. A classification system that misidentifies sensitive data as non-sensitive, or vice versa, creates cascading problems throughout the security infrastructure.

In high-stakes domains, the consequences of inaccuracy are severe:

  • Compliance violations: Misclassifying regulated data can lead to improper handling, resulting in regulatory penalties and legal liability.
  • Security breaches: Failing to identify sensitive information means it won't receive appropriate protections, creating exploitable vulnerabilities.
  • Operational disruption: False positives overwhelm security teams with alerts, while false negatives allow genuine threats to slip through undetected.
  • Business impact: Incorrect classification can block legitimate business processes or expose confidential information to unauthorized parties.

Modern automated classification systems achieve high accuracy through multiple techniques: machine learning models trained on diverse datasets, natural language processing that understands context and semantics, and continuous learning mechanisms that adapt to new data patterns. This accuracy is the non-negotiable starting point that builds the foundation for reliable security operations.

Unstructured Data Classification: The Hard Problem

While structured data in databases follows predictable schemas that simplify classification, unstructured data, including documents, emails, presentations, images, and collaboration platform content, presents a fundamentally more complex challenge. This category represents the vast majority of enterprise data, often accounting for 80-90% of an organization's total information assets.

The difficulty stems from several factors:

  • Lack of consistent format: Unlike database fields with defined data types, unstructured content varies wildly in structure, making pattern matching unreliable.
  • Context dependency: The same text string might be sensitive in one context but innocuous in another. A nine-digit number could be a Social Security number, a phone number, or a random identifier.
  • Embedded complexity: Sensitive information often appears within larger documents, requiring systems to analyze content at a granular level rather than simply tagging entire files.
  • Format diversity: Data exists in countless file types, PDFs, Word documents, spreadsheets, images with embedded text, each requiring different parsing approaches.

Traditional rule-based systems struggle with unstructured data because they rely on rigid patterns and keywords that generate excessive false positives and miss contextual variations. Modern automated classification addresses this hard problem through natural language processing, machine learning models trained on diverse content types, and contextual analysis that considers surrounding information to determine sensitivity. Organizations evaluating solutions should consider best data classification tools that specifically address unstructured data challenges at scale.

Context: Turning Detection Into Understanding

Context transforms raw detection into meaningful understanding by providing the additional layers of information needed to clarify what is being detected. In data classification, raw features such as number patterns or specific keywords can be misleading unless additional context is available.

Context provides several critical dimensions:

  • Environmental cues: The location where data appears matters significantly. A credit card number in a payment processing system has different implications than the same number in a test dataset or training document.
  • Spatial and temporal relationships: Understanding how data elements relate to one another adds crucial insight. A document containing employee names alongside salary information is more sensitive than a document with names alone.
  • External metadata: Information about file creation dates, authors, access patterns, and business processes further refines detection. A document created by the legal department and accessed only by executives likely contains confidential information.

This integration of multiple layers bridges the gap between raw detections and holistic understanding by providing environmental clues that validate what is detected, defining semantic relationships between elements to reduce ambiguity, and supplying temporal cues that guide overall interpretation. For organizations handling particularly sensitive information, understanding sensitive data classification approaches that leverage context is essential for achieving accurate results.

Labeling and Downstream Security Tools: Where Value Is Realized

Labeling converts raw data into a structured, context-rich asset that security systems can immediately act on. By assigning precise tags that reflect sensitivity level, regulatory requirements, business relevance, and risk profile, labeling enables security solutions to move from passive identification to active protection.

How Labeling Makes Classification Actionable

  • Automated policy enforcement: Once data is labeled, security systems automatically apply appropriate controls. Highly sensitive data might be encrypted at rest and in transit, restricted to specific user groups, and monitored for unusual access patterns.
  • Prioritized threat detection: Security monitoring tools use labels to quickly identify and prioritize high-risk events. An attempt to exfiltrate data labeled as "confidential financial records" triggers immediate investigation.
  • Integration with downstream tools: Labels create a common language across the security ecosystem. Data loss prevention systems, cloud access security brokers, and SIEM solutions all consume classification labels to make informed decisions.
  • Compliance automation: Labels that map to GDPR categories, HIPAA protected health information (PHI), or PCI DSS cardholder data enable automated compliance workflows, including retention policies and audit trail generation.

Value Realization in Security Operations

Classification transforms abstract risk profiles into actionable intelligence that downstream security tools use to enforce robust security measures. This is where the investment in automated classification delivers tangible returns through enhanced protection, operational efficiency, and compliance assurance.

The added context from classification enables downstream tools to better differentiate between benign anomalies and genuine threats. Security analysts investigating an alert can immediately see that the data involved is highly sensitive, warranting urgent attention, or routine information that follows the unusual pattern. This leads to more effective threat investigations while minimizing false alarms that contribute to alert fatigue.

Automated Data Classification for AI Governance

Automated Data Classification serves as a foundational element in AI governance because it transforms vast, unstructured datasets into accurately labeled, actionable intelligence that enables responsible AI adoption. As organizations increasingly leverage artificial intelligence and machine learning technologies, understanding where sensitive data lives, how it moves, and who can access it becomes critical for preventing unauthorized AI access and ensuring compliance.

Key roles in AI governance include dynamic and context-aware identification that distinguishes between similar content in real time, enhanced compliance and auditability through consistent mapping to regulatory frameworks, improved data security through continuous monitoring and protective measures, and streamlined operational efficiency by eliminating manual tagging errors.

Sentra's cloud-native data security platform delivers AI-ready data governance and compliance at petabyte scale. By discovering and governing sensitive data inside your own environment, ensuring data never leaves your control, Sentra allows enterprises to securely adopt AI technologies with complete visibility. The platform's in-environment architecture maps how data moves and prevents unauthorized AI access through strict data-driven guardrails. By eliminating shadow and redundant, obsolete, or trivial (ROT) data, Sentra not only secures organizations for the AI era but also typically reduces cloud storage costs by approximately 20%.

Conclusion: The Engine of Modern Data Security

In 2026, as we navigate the complexities of the data landscape, Automated Data Classification has evolved from a helpful tool into the essential engine driving modern data security. The technology addresses the fundamental challenge that organizations cannot protect what they cannot identify, providing the visibility and control necessary to secure sensitive information across petabyte-scale, multi-cloud environments.

The value proposition is clear: automated classification delivers accuracy at scale, enabling organizations to move from reactive, manual processes to proactive, intelligent security postures. By leveraging machine learning, natural language processing, and contextual analysis, these systems understand data meaning rather than simply matching patterns, ensuring that protective measures are consistently applied to the right information at the right time.

The benefits extend across the entire security ecosystem. Discovery capabilities eliminate blind spots, accurate classification reduces false positives and compliance risks, contextual understanding transforms raw detection into actionable intelligence, and consistent labeling enables downstream security tools to enforce granular policies automatically. For organizations adopting AI technologies, automated data classification provides the governance foundation necessary to innovate responsibly while maintaining regulatory compliance and data protection standards.

In an era defined by exponential data growth, sophisticated cyber threats, and stringent regulatory requirements, automated classification is no longer optional, it is the foundational capability that enables every other aspect of data security to function effectively.

<blogcta-big>

Read More
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security. Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!