Sentra Launches Breakthrough AI Classification Capabilities!
All Resources
In this article:
minus iconplus icon
Share the Blog

Top 6 Azure Security Tools, Features, and Best Practices

November 7, 2022
6
Min Read

Nowadays, it is evident that the rapid growth of cloud computing has changed how organizations operate. Many organizations increasingly rely on the cloud to drive their daily business operations. The cloud is a single place for storing, processing and accessing data; it’s no wonder that people are becoming addicted to its convenience.

However, as the dependence on cloud service providers continues, the need for security also increases. One needs to measure and safeguard sensitive data to protect against possible threats. Remember that security is a shared responsibility - even if your cloud provider secures your data, the security will not be absolute. Thus, understanding the security features of a particular cloud service provider becomes significant.

Introduction to Microsoft Azure Security Services

Image of Microsoft Azure, explaining how to strengthen security posture with Azure

Microsoft Azure offers services and tools for businesses to manage their applications and infrastructure. Utilizing Azure ensures robust security measures are in place to protect sensitive data, maintain privacy, and mitigate potential threats.

This article will tackle Azure’s security features and tools to help organizations and individuals safeguard and protect their data while they continue their innovation and growth. 

There’s a collective set of security features, services, tools, and best practices offered by Microsoft to protect cloud resources. In this section, let's explore some layers to gain some insights.

The Layers of Security in Microsoft Azure:

Layers of Security Description
Physical Security Microsoft Azure has a strong foundation of physical security measures, and it operates state-of-the-art data centers worldwide with strict physical access controls, which ensures that Azure's infrastructure protects itself against unauthorized physical access.
Network Security Virtual networks, network security groups (NSGs), and distributed denial of service (DDoS) protection create isolated and secure network environments. Microsoft Azure network security mechanisms secure data in transit and protect against unauthorized network access. Of course, we must recognize Azure Virtual Network Gateway, which secures connections between on-premises networks and Azure resources.
Identity and Access Management (IAM) Microsoft Azure offers identity and access management capabilities to control and secure access to cloud resources. The Azure Active Directory (AD) is a centralized identity management platform that allows organizations to manage user identities, enforce robust authentication methods, and implement fine-grained access controls through role-based access control (RBAC).
Data Security Microsoft Azure offers Azure Storage Service Encryption (SSE) which encrypts data at rest, while Azure Disk Encryption secures virtual machine disks. Azure Key Vault provides a secure and centralized location for managing cryptographic keys and secrets.
Threat Detection and Monitoring Microsoft Azure offers Azure Security Center, which provides a centralized view of security recommendations, threat intelligence, and real-time security alerts. Azure Sentinel offers cloud-native security information that helps us quickly detect, alert, investigate, and resolve security incidents.
Compliance and Governance Microsoft Azure offers Azure Policy to define and enforce compliance controls across Azure resources within the organization. Moreover, it helps provide compliance certifications and adhere to industry-standard security frameworks.

Let’s explore some features and tools, and discuss their key features and best practices.

Azure Active Directory Identity Protection

Image of Azure’s Identity Protection page, explaining what is identity protection

Identity protection is a cloud-based service for the Azure AD suite. It focuses on helping organizations protect their user identities and detect potential security risks. Moreover, it uses advanced machine learning algorithms and security signals from various sources to provide proactive and adaptive security measures. Furthermore, leveraging machine learning and data analytics can identify risky sign-ins, compromised credentials, and malicious or suspicious user behavior. How’s that? Sounds great, right?

Key Features

1. Risk-Based User Sign-In Policies

It allows organizations to define risk-based policies for user sign-ins which evaluate user behavior, sign-in patterns, and device information to assess the risk level associated with each sign-in attempt. Using the risk assessment, organizations can enforce additional security measures, such as requiring multi-factor authentication (MFA), blocking sign-ins, or prompting password resets.

2. Risky User Detection and Remediation

The service detects and alerts organizations about potentially compromised or risky user accounts. It analyzes various signals, such as leaked credentials or suspicious sign-in activities, to identify anomalies and indicators of compromise. Administrators can receive real-time alerts and take immediate action, such as resetting passwords or blocking access, to mitigate the risk and protect user accounts.

Best Practices

  • Educate Users About Identity Protection - Educating users is crucial for maintaining a secure environment. Most large organizations now provide security training to increase the awareness of users. Training and awareness help users protect their identities, recognize phishing attempts, and follow security best practices.
  • Regularly Review and Refine Policies - Regularly assessing policies helps ensure their effectiveness, which is why it is good to continuously improve the organization’s Azure AD Identity Protection policies based on the changing threat landscape and your organization's evolving security requirements.

Azure Firewall

Image of Azure Firewall page, explaining what is Azure Firewall

Microsoft offers an Azure Firewall, which is a cloud-based network security service. It acts as a barrier between your Azure virtual networks and the internet. Moreover, it provides centralized network security and protection against unauthorized access and threats. Furthermore, it operates at the network and application layers, allowing you to define and enforce granular access control policies.

Thus, it enables organizations to control inbound and outbound traffic for virtual and on-premises networks connected through Azure VPN or ExpressRoute. Of course, we can’t ignore the filtering traffic of source and destination IP addresses, ports, protocols, and even fully qualified domain names (FQDNs).

Key Features

1. Network and Application-Level Filtering

This feature allows organizations to define rules based on IP addresses (source and destination), including ports, protocols, and FQDNs. Moreover, it helps organizations filter network and application-level traffic, controlling inbound and outbound connections.

2. Fully Stateful Firewall

Azure Firewall is a stateful firewall, which means it can intelligently allow return traffic for established connections without requiring additional rules. The beneficial aspect of this is it simplifies rule management and ensures that legitimate traffic flows smoothly.

3. High Availability and Scalability

Azure Firewall is highly available and scalable. It can automatically scale with your network traffic demand increases and provides built-in availability through multiple availability zones.

Best Practices

  • Design an Appropriate Network Architecture - Plan your virtual network architecture carefully to ensure proper placement of Azure Firewall. Consider network segmentation, subnet placement, and routing requirements to enforce security policies and control traffic flow effectively.
  • Implement Network Traffic Filtering Rules - Define granular network traffic filtering rules based on your specific security requirements. Start with a default-deny approach and allow only necessary traffic. Regularly review and update firewall rules to maintain an up-to-date and effective security posture.
  • Use Application Rules for Fine-Grain Control - Leverage Azure Firewall's application rules to allow or deny traffic based on specific application protocols or ports. By doing this, organizations can enforce granular access control to applications within their network.

Azure Resource Locks

Image of Azure Resource Locks page, explaining how to lock your resources to protect your infrastructure

Azure Resource Locks is a Microsoft Azure feature that allows you to restrict Azure resources to prevent accidental deletion or modification. It provides an additional layer of control and governance over your Azure resources, helping mitigate the risk of critical changes or deletions.

Key Features

Two types of locks can be applied:

1. Read-Only (CanNotDelete)

This lock type allows you to mark a resource as read-only, meaning modifications or deletions are prohibited.

2. CanNotDelete (Delete)

This lock type provides the highest level of protection by preventing both modifications and deletions of a resource; it ensures that the resource remains completely unaltered.

Best Practices

  • Establish a Clear Governance Policy - Develop a governance policy that outlines the use of Resource Locks within your organization. The policy should define who has the authority to apply or remove locks and when to use locks, and any exceptions or special considerations.
  • Leverage Azure Policy for Lock Enforcement - Use Azure Policy alongside Resource Locks to enforce compliance with your governance policies. It is because Azure Policy can automatically apply locks to resources based on predefined rules, reducing the risk of misconfigurations.

Azure Secure SQL Database Always Encrypted

Image of Azure Always Encrypted page, explaining how it works

Azure Secure SQL Database Always Encrypted is a feature of Microsoft Azure SQL Database that provides another security-specific layer for sensitive data. Moreover, it protects data at rest and in transit, ensuring that even database administrators or other privileged users cannot access the plaintext values of the encrypted data.

Key Features

1. Client-Side Encryption

Always Encrypted enables client applications to encrypt sensitive data before sending it to the database. As a result, the data remains encrypted throughout its lifecycle and can be decrypted only by an authorized client application.

2. Column-Level Encryption

Always Encrypted allows you to selectively encrypt individual columns in a database table rather than encrypting the entire database. It gives organizations fine-grained control over which data needs encryption, allowing you to balance security and performance requirements.

3. Transparent Data Encryption

The database server stores the encrypted data using a unique encryption format, ensuring the data remains protected even if the database is compromised. The server is unaware of the data values and cannot decrypt them.

Best Practices

The organization needs to plan and manage encryption keys carefully. This is because encryption keys are at the heart of Always Encrypted. Consider the following best practices.

  • Use a Secure and Centralized Key Management System - Store encryption keys in a safe and centralized location, separate from the database. Azure Key Vault is a recommended option for managing keys securely.
  • Implement Key Rotation and Backup - Regularly rotate encryption keys to mitigate the risks of key compromise. Moreover, establish a key backup strategy to recover encrypted data due to a lost or inaccessible key.
  • Control Access to Encryption Keys - Ensure that only authorized individuals or applications have access to the encryption keys. Applying the principle of least privilege and robust access control will prevent unauthorized access to keys.

Azure Key Vault

Image of Azure Key Vault page

Azure Key Vault is a cloud service provided by Microsoft Azure that helps safeguard cryptographic keys, secrets, and sensitive information. It is a centralized storage and management system for keys, certificates, passwords, connection strings, and other confidential information required by applications and services. It allows developers and administrators to securely store and tightly control access to their application secrets without exposing them directly in their code or configuration files.

Key Features

1. Key Management

Key Vault provides a secure key management system that allows you to create, import, and manage cryptographic keys for encryption, decryption, signing, and verification.

2. Secret Management

It enables you to securely store (as plain text or encrypted value) and manage secrets such as passwords, API keys, connection strings, and other sensitive information.

3. Certificate Management

Key Vault supports the storage and management of X.509 certificates, allowing you to securely store, manage, and retrieve credentials for application use.

4. Access Control

Key Vault provides fine-grained access control to manage who can perform operations on stored keys and secrets. It integrates with Azure Active Directory (Azure AD) for authentication and authorization.

Best Practices

  • Centralized Secrets Management - Consolidate all your application secrets and sensitive information in Key Vault rather than scattering them across different systems or configurations. The benefit of this is it simplifies management and reduces the risk of accidental exposure.
  • Use RBAC and Access Policies - Implement role-based access control (RBAC) and define granular access policies to power who can perform operations on Key Vault resources. Follow the principle of least privilege, granting only the necessary permissions to users or applications.
  • Secure Key Vault Access - Restrict access to Key Vault resources to trusted networks or virtual networks using virtual network service or private endpoints because it helps prevent unauthorized access to the internet.

Azure AD Multi-Factor Authentication

Image of Azure AD Multi-Factor Authentication page, explaining how it works

It is a security feature provided by Microsoft Azure that adds an extra layer of protection to user sign-ins and helps safeguard against unauthorized access to resources. Users must give additional authentication factors beyond just a username and password.

Key Features

1. Multiple Authentication Methods

Azure AD MFA supports a range of authentication methods, including phone calls, text messages (SMS), mobile app notifications, mobile app verification codes, email, and third-party authentication apps. This flexibility allows organizations to choose the methods that best suit their users' needs and security requirements.

2. Conditional Access Policies

Azure AD MFA can configure conditional access policies, allowing organizations to define specific conditions under which MFA (is required), once applied to an organization, on the user location, device trust, application sensitivity, and risk level. This granular control helps organizations strike a balance between security and user convenience.

Best Practices

  • Enable MFA for All Users - Implement a company-wide policy to enforce MFA for all users, regardless of their roles or privileges, because it will ensure consistent and comprehensive security across the organization.
  • Use Risk-Based Policies - Leverage Azure AD Identity Protection and its risk-based policies to dynamically adjust the level of authentication required based on the perceived risk of each sign-in attempt because it will help balance security and user experience by applying MFA only when necessary.
  • Implement Multi-Factor Authentication for Privileged Accounts - Ensure that all privileged accounts, such as administrators and IT staff, are protected with MFA. These accounts have elevated access rights and are prime targets for attackers. Enforcing MFA adds an extra layer of protection to prevent unauthorized access.

Conclusion

In this post, we have introduced the importance of cybersecurity in the cloud space due to dependence on cloud providers. After that we discussed some layers of security in Azure to gain insights about its landscape and see some tools and features available. Of course we can’t ignore the features such as Azure Active Directory Identity Protection, Azure Firewall, Azure Resource Locks, Azure Secure SQL Database Always Encrypted, Azure Key Vault and Azure AD Multi-Factor Authentication by giving an overview on each, its key features and the best practices we can apply to our organization.

Ready to go beyond native Azure tools?

While Azure provides powerful built-in security features, securing sensitive data across multi-cloud environments requires deeper visibility and control.

Request a demo with Sentra to see how our platform complements Azure by discovering, classifying, and protecting sensitive data - automatically and continuously.

<blogcta-big>

Discover Ron’s expertise, shaped by over 20 years of hands-on tech and leadership experience in cybersecurity, cloud, big data, and machine learning. As a serial entrepreneur and seed investor, Ron has contributed to the success of several startups, including Axonius, Firefly, Guardio, Talon Cyber Security, and Lightricks, after founding a company acquired by Oracle.

Subscribe

Latest Blog Posts

David Stuart
David Stuart
Gilad Golani
Gilad Golani
December 4, 2025
3
Min Read

Zero Data Movement: The New Data Security Standard that Eliminates Egress Risk

Zero Data Movement: The New Data Security Standard that Eliminates Egress Risk

Cloud adoption and the explosion of data have boosted business agility, but they’ve also created new headaches for security teams. As companies move sensitive information into multi-cloud and hybrid environments, old security models start to break down. Shuffling data for scanning and classification adds risk, piles on regulatory complexity, and drives up operational costs.

Zero Data Movement (ZDM) offers a new architectural approach, reshaping how advanced Data Security Posture Management (DSPM) platforms provide visibility, protection, and compliance. This post breaks down what makes ZDM unique, why it matters for security-focused enterprises, and how Sentra provides an innovative agentless and scalable design that is genuinely a zero data movement DSPM .

Defining Zero Data Movement Architecture

Zero Data Movement (ZDM) sets a new standard in data security. The premise is straightforward: sensitive data should stay in its original environment for security analysis, monitoring, and enforcement. Older models require copying, exporting, or centralizing data to scan it, while ZDM ensures that all security actions happen directly where data resides.

ZDM removes egress risk -shrinking the attack surface and reducing regulatory issues. For organizations juggling large cloud deployments and tight data residency rules, ZDM isn’t just an improvement - it's essential. Groups like the Cloud Security Alliance and new privacy regulations are moving the industry toward designs that build in privacy and non-stop protection.

Risks of Data Movement: Compliance, Cost, and Egress Exposure

Every time data is copied, exported, or streamed out of its native environment, new risks arise. Data movement creates challenges such as:

  • Egress risk: Data at rest or in transit outside its original environment  increases risk of breach, especially as those environments may be less secure.
  • Compliance and regulatory exposure: Moving data across borders or different clouds can break geo-fencing and privacy controls, leading to potential violations and steep fines.
  • Loss of context and control: Scattered data makes it harder to monitor everything, leaving gaps in visibility.
  • Rising total cost of ownership (TCO): Scanning and classification can incur heavy cloud compute costs - so efficiency matters.  Exporting or storing data, especially shadow data, drives up storage, egress, and compliance costs as well.

As more businesses rely on data, moving it unnecessarily only increases the risk - especially with fast-changing cloud regulations.

Legacy and Competitor Gaps: Why Data Movement Still Happens

Not every security vendor practices true zero data movement, and the differences are notable. Products from Cyera, Securiti, or older platforms still require temporary data exporting or duplication for analysis. This might offer a quick setup, but it exposes users to egress risks, insider threats, and compliance gaps - problems that are worse in regulated fields.

Competitors like Cyera often rely on shortcuts that fall short of ZDM’s requirements. Securiti and similar providers depend on connectors, API snapshots, or central data lakes, each adding potential risks and spreading data further than necessary. With ZDM, security operations like monitoring and classification happen entirely locally, removing the need to trust external storage or aggregation. For more detail on how data movement drives up risk.

The Business Value of Zero Data Movement DSPM

Zero data movement DSPM changes the equation for businesses:

  • Designed for compliance: Data remains within controlled environments, shrinking audit requirements and reducing breach likelihood.
  • Lower TCO and better efficiency: Eliminates hidden expenses from extra storage, duplicate assets, and exporting to external platforms.
  • Regulatory clarity and privacy: Supports data sovereignty, cross-border rules, and new zero trust frameworks with an egress-free approach.

Sentra’s agentless, cloud-native DSPM provides these benefits by ensuring sensitive data is never moved or copied. And Sentra delivers these benefits at scale - across multi-petabyte enterprise environments - without the performance and cost tradeoffs others suffer from. Real scenarios show the results: financial firms keep audit trails without data ever leaving allowed regions. Healthcare providers safeguard PHI at its source. Global SaaS companies secure customer data at scale, cost-effectively while meeting regional rules.

Future-Proofing Data Security: ZDM as the New Standard

With data volumes expected to hit 181 zettabytes in 2025, older protection methods that rely on moving data can’t keep up. Zero data movement architecture meets today's security demands and supports zero trust, metadata-driven access, and privacy-first strategies for the future.

Companies wanting to avoid dead ends should pick solutions that offer unified discovery, classification and policy enforcement without egress risk. Sentra’s ZDM architecture makes this possible, allowing organizations to analyze and protect information where it lives, at cloud speed and scale.

Conclusion

Zero Data Movement is more than a technical detail - it's a new architectural standard for any organization serious about risk control, compliance, and efficiency. As data grows and regulations become stricter, the old habits of moving, copying, or centralizing sensitive data will no longer suffice.

Sentra stands out by delivering a zero data movement DSPMplatform that's agentless, real-time, and truly multicloud. For security leaders determined to cut egress risk, lower compliance spending, and get ahead in privacy, ZDM is the clear path forward.

Read More
Charles Garlow
Charles Garlow
December 3, 2025
3
Min Read

Petabyte Scale is a Security Requirement (Not a Feature): The Hidden Cost of Inefficient DSPM

Petabyte Scale is a Security Requirement (Not a Feature): The Hidden Cost of Inefficient DSPM

As organizations scramble to secure their sprawling cloud environments and deploy AI, many are facing a stark realization: handling petabyte-scale data is now a basic security requirement. With sensitive information multiplying across multiple clouds, SaaS, and AI-driven platforms, security leaders can't treat true data security at scale as a simple add-on or upgrade.

At the same time, speeding up digital transformation means higher and less visible operational costs for handling this data surge. Older Data Security Posture Management (DSPM) tools, especially those boasting broad, indiscriminate scans as evidence of their scale, are saddling organizations with rising cloud bills, slowdowns, and dangerous gaps in visibility. The costs of securing petabyte-scale data are now economic and technical, demanding efficiency instead of just scale. Sentra solves this with a highly-efficient cloud-native design, delivering 10x lower cloud compute costs.

Why Petabyte Scale is a Security Requirement

Data environments have exploded in both size and complexity. For Fortune 500 companies, fast-growing SaaS providers, and global organizations, data exists across public and hybrid clouds, business units, regions, and a stream of new applications.

Regulations such as GDPR, HIPAA, and rules from the SEC now demand current data inventories and continuous proof of risk management. In this environment, defending data at the petabyte level is now essential. Failing to classify and monitor this data efficiently means risking compliance and losing business trust. Security teams are feeling the strain. I meet security teams everyday and too many of them still struggle with data visibility and are already seeing the cracks forming in their current toolset as data scales.

The Hidden Cost of Inefficient DSPM: API Calls and Egress Bills

How DSPM tools perform scanning and discovery drives the real costs of securing petabyte-scale data. Some vendors highlight their capacity to scan multiple petabytes daily. But here's the reality: scanning everything, record by record, relying on huge numbers of API calls, becomes very expensive as your data estate grows.

Every API call can rack up costs, and all the resulting data egress and compute add up too. Large organizations might spend tens of thousands of dollars each month just to track what’s in their cloud. Even worse, older "full scan" DSPM strategies jam up operations with throttling, delays, and a flood of alerts that bury real risk. These legacy approaches simply don’t scale, and organizations relying on them end up paying more while knowing less.

 

Cyera’s "Petabyte Scale" Claims: At What Cloud Cost?

Cyera promotes its tool as an AI-native, agentless DSPM that can scan as much as 2 petabytes daily . While that’s an impressive technical achievement, the strategy of scanning everything leads directly to massive cloud infrastructure costs: frequent API hits, heavy egress, and big bills from AWS, Azure, and GCP.

At scale, these charges don’t just appear on invoices, they can actually stop adoption and limit security’s effectiveness. Cloud operations teams face API throttling, slow results, and a surge in remediation tickets as risks go unfiltered. In these fast-paced environments, recognizing the difference between a real threat and harmless data comes down to speed. The Bedrock Security blog points out how inefficient setups buckle under this weight, leaving teams stuck with lagging visibility and more operational headaches.

Sentra’s 10x Efficiency: Optimized Scanning for Real-World Scale

Sentra takes another route to manage the costs of securing petabyte-scale data. By combining agentless discovery with scanning guided by context and metadata, Sentra uses pattern recognition and an AI-driven clustering algorithm designed to detect machine-generated content—such as log files, invoices, and similar data types. By intelligently sampling data within each cluster, Sentra delivers efficient scanning while reducing scanning costs.

This approach enables data scanning to be prioritized based on risk and business value, rather than wasting time and money scanning the same data over and over again, skipping unnecessary API calls, lowering egress, and keeping cloud bills in check.

Large organizations gain a 10x efficiency edge: quicker classification of data, instant visibility into actual threats, lower operational expenses, and less demand on the network. By focusing attention only where it matters, Sentra matches data security posture management to the demands of current cloud growth and regulatory requirements.

This makes it possible for organizations to hit regulatory and audit targets without watching expenses spiral or opening up security gaps.Sentra offers multiple sampling levels, Quick (default), Moderate, Thorough, and Full, allowing customers to tailor their scanning strategy to balance cost and accuracy. For example, a highly regulated environment can be configured for a full scan, while less-regulated environments can use more efficient sampling. Petabyte-scale security gives the user complete control of their data enterprise and turns into something operationally and financially sustainable, rather than a technical milestone with a hidden cost. 

Efficiency is Non-Negotiable

Fortune 500 companies and digital-first organizations can’t treat efficiency as optional. Inefficient DSPM tools pile on costs, drain resources, and let vulnerabilities slip through, turning their security posture into a liability once scale becomes a factor. Sentra’s platform shows that efficiency is security: with targeted scanning, real context, and unified detection and response, organizations gain clarity and compliance while holding down expenses.

Don’t let your data protection approach crumble under petabyte-scale pressure. See what Sentra can do, reduce costs, and keep essential data secure - before you end up responding to breaches or audit failures.

Conclusion

Securing data at the petabyte level isn't some future aspiration - it's the standard for enterprises right now. Treating it as a secondary feature isn’t just shortsighted; it puts your company at risk, financially and operationally.

The right DSPM architecture brings efficiency, not just raw scale. Sentra delivers real-time, context-rich security posture with far greater efficiency, so your protection and your cloud spending can keep up with your growing business. Security needs to grow along with scale. Rising costs and new risks shouldn’t grow right alongside it.

Want to see how your current petabyte security posture compares? Schedule a demo and see Sentra’s efficiency for yourself.

<blogcta-big>

Read More
Shiri Nossel
Shiri Nossel
December 1, 2025
4
Min Read

How Sentra Uncovers Sensitive Data Hidden in Atlassian Products

How Sentra Uncovers Sensitive Data Hidden in Atlassian Products

Atlassian tools such as Jira and Confluence are the beating heart of software development and IT operations. They power everything from sprint planning to debugging production issues. But behind their convenience lies a less-visible problem: these collaboration platforms quietly accumulate vast amounts of sensitive data often over years that security teams can’t easily monitor or control.

The Problem: Sensitive Data Hidden in Plain Sight

Many organizations rely on Jira to manage tickets, track incidents, and communicate across teams. But within those tickets and attachments lies a goldmine of sensitive information:

  • Credentials and access keys to different environments.
  • Intellectual property, including code snippets and architecture diagrams.
  • Production data used to reproduce bugs or validate fixes — often in violation of data-handling regulations.
  • Real customer records shared for troubleshooting purposes.

This accumulation isn’t deliberate; it’s a natural byproduct of collaboration. However, it results in a long-tail exposure risk - historical tickets that remain accessible to anyone with permissions.

The Insider Threat Dimension

Because Jira and Confluence retain years of project history, employees and contractors may have access to data they no longer need. In some organizations, teams include offshore or external contributors, multiplying the risk surface. Any of these users could intentionally or accidentally copy or export sensitive content at any moment.

Why Sensitive Data Is So Hard to Find

Sensitive data in Atlassian products hides across three levels, each requiring a different detection approach:

  1. Structured Data (Records): Every ticket or page includes structured fields - reporter, status, labels, priority. These schemas are customizable, meaning sensitive fields can appear unpredictably. Security teams rarely have visibility or consistent metadata across instances.

  2. Unstructured Data (Descriptions & Discussions): Free-text fields are where developers collaborate — and where secrets often leak. Comments can contain access tokens, internal URLs, or step-by-step guides that expose system details.
  3. Unstructured Data (Attachments): Screenshots, log files, spreadsheets, code exports, or even database snapshots are commonly attached to tickets. These files may contain credentials, customer PII, or proprietary logic, yet they are rarely scanned or governed.
Collaboration Platform DB - Jira issue screenshot (with sensitive content redacted) to visualize these three levels from the Demo env

The Challenge for Security Teams

Traditional security tools were never designed for this kind of data sprawl. Atlassian environments can contain millions of tickets and pages, spread across different projects and permissions. Manually auditing this data is impractical. Even modern DLP tools struggle to analyze the context of free text or attachments embedded within these platforms.

Compliance teams face an uphill battle: GDPR, HIPAA, and SOC 2 all require knowing where sensitive data resides. Yet in most Atlassian instances, that visibility is nonexistent.

How Sentra Solves the Problem

Sentra takes a different approach. Its cloud-native data security platform discovers and classifies sensitive data wherever it lives - across SaaS applications, cloud storage, and on-prem environments. When connecting your atlassian environment, Sentra delivers visibility and control across every layer of Jira and Confluence.

Comprehensive Coverage

Sentra delivers consistent data governance across SaaS and cloud-native environments. When connected to Atlassian Cloud, Sentra’s discovery engine scans Jira and Confluence content to uncover sensitive information embedded in tickets, pages, and attachments, ensuring full visibility without impacting performance.

In addition, Sentra’s flexible architecture can be extended to support hybrid environments, providing organizations with a unified view of sensitive data across diverse deployment models.

AI-Based Classification

Using advanced AI models, Sentra classifies data across all three tiers:

  • Structured metadata, identifying risky fields and tags.
  • Unstructured text, analyzing ticket descriptions, comments, and discussions for credentials, PII, or regulated data.
  • Attachments, scanning files like logs or database snapshots for hidden secrets.

This contextual understanding distinguishes between harmless content and genuine exposure, reducing false positives.

Full Lifecycle Scanning

Sentra doesn’t just look at new tickets, it scans the entire historical archive to detect legacy exposure, while continuously monitoring for ongoing changes. This dual approach helps security teams remediate existing risks and prevent future leaks.

The Real-World Impact

Organizations using Sentra gain the ability to:

  • Prevent accidental leaks of credentials or production data in collaboration tools.
  • Enforce compliance by mapping sensitive data across Jira and Confluence.
  • Empower DevOps and security teams to collaborate safely without stifling productivity.

Conclusion

Collaboration is essential, but it should never compromise data security. Atlassian products enable innovation and speed, yet they also hold years of unmonitored information. Sentra bridges that gap by giving organizations the visibility and intelligence to discover, classify, and protect sensitive data wherever it lives, even in Jira and Confluence.

<blogcta-big>

Read More
decorative ball
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security. Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!

Before you go...

Get the Gartner Customers' Choice for DSPM Report

Read why 98% of users recommend Sentra.

Gartner Certificate for Sentra