All Resources
In this article:
minus iconplus icon
Share the Blog

Safeguarding Data Integrity and Privacy in the Age of AI-Powered Large Language Models (LLMs)

December 6, 2023
4
 Min Read
Data Security

In the burgeoning realm of artificial intelligence (AI), Large Language Models (LLMs) have emerged as transformative tools, enabling the development of applications that revolutionize customer experiences and streamline business operations. These sophisticated AI models, trained on massive amounts of text data, can generate human-quality text, translate languages, write different kinds of creative content, and answer questions in an informative way.

Unfortunately, the extensive data consumption and rapid adoption of LLMs has also brought to light critical challenges surrounding the protection of data integrity and privacy during the training process. As organizations strive to harness the power of LLMs responsibly, it is imperative to address these vulnerabilities and ensure that sensitive information remains secure.

Challenges: Navigating the Risks of LLM Training

The training of LLMs often involves the utilization of vast amounts of data, often containing sensitive information such as personally identifiable information (PII), intellectual property, and financial records. This wealth of data presents a tempting target for malicious actors seeking to exploit vulnerabilities and gain unauthorized access.

One of the primary challenges is preventing data leakage or public disclosure. LLMs can inadvertently disclose sensitive information if not properly configured or protected. This disclosure can occur through various means, such as unauthorized access to training data, vulnerabilities in the LLM itself, or improper handling of user inputs.

Another critical concern is avoiding overly permissive configurations. LLMs can be configured to allow users to provide inputs that may contain sensitive information. If these inputs are not adequately filtered or sanitized, they can be incorporated into the LLM's training data, potentially leading to the disclosure of sensitive information.

Finally, organizations must be mindful of the potential for bias or error in LLM training data. Biased or erroneous data can lead to biased or erroneous outputs from the LLM, which can have detrimental consequences for individuals and organizations.

OWASP Top 10 for LLM Applications

The OWASP Top 10 for LLM Applications identifies and prioritizes critical vulnerabilities that can arise in LLM applications. Among these, LLM03 Training Data Poisoning, LLM06 Sensitive Information Disclosure, LLM08 Excessive Agency, and LLM10 Model Theft pose significant risks that cybersecurity professionals must address. Let's dive into these:

OWASP Top 10 for LLM Applications

LLM03: Training Data Poisoning

LLM03 addresses the vulnerability of LLMs to training data poisoning, a malicious attack where carefully crafted data is injected into the training dataset to manipulate the model's behavior. This can lead to biased or erroneous outputs, undermining the model's reliability and trustworthiness.

The consequences of LLM03 can be severe. Poisoned models can generate biased or discriminatory content, perpetuating societal prejudices and causing harm to individuals or groups. Moreover, erroneous outputs can lead to flawed decision-making, resulting in financial losses, operational disruptions, or even safety hazards.


LLM06: Sensitive Information Disclosure

LLM06 highlights the vulnerability of LLMs to inadvertently disclosing sensitive information present in their training data. This can occur when the model is prompted to generate text or code that includes personally identifiable information (PII), trade secrets, or other confidential data.

The potential consequences of LLM06 are far-reaching. Data breaches can lead to financial losses, reputational damage, and regulatory penalties. Moreover, the disclosure of sensitive information can have severe implications for individuals, potentially compromising their privacy and security.

LLM08: Excessive Agency

LLM08 focuses on the risk of LLMs exhibiting excessive agency, meaning they may perform actions beyond their intended scope or generate outputs that cause harm or offense. This can manifest in various ways, such as the model generating discriminatory or biased content, engaging in unauthorized financial transactions, or even spreading misinformation.

Excessive agency poses a significant threat to organizations and society as a whole. Supply chain compromises and excessive permissions to AI-powered apps can erode trust, damage reputations, and even lead to legal or regulatory repercussions. Moreover, the spread of harmful or offensive content can have detrimental social impacts.

LLM10: Model Theft

LLM10 highlights the risk of model theft, where an adversary gains unauthorized access to a trained LLM or its underlying intellectual property. This can enable the adversary to replicate the model's capabilities for malicious purposes, such as generating misleading content, impersonating legitimate users, or conducting cyberattacks.

Model theft poses significant threats to organizations. The loss of intellectual property can lead to financial losses and competitive disadvantages. Moreover, stolen models can be used to spread misinformation, manipulate markets, or launch targeted attacks on individuals or organizations.

Recommendations: Adopting Responsible Data Protection Practices

To mitigate the risks associated with LLM training data, organizations must adopt a comprehensive approach to data protection. This approach should encompass data hygiene, policy enforcement, access controls, and continuous monitoring.

Data hygiene is essential for ensuring the integrity and privacy of LLM training data. Organizations should implement stringent data cleaning and sanitization procedures to remove sensitive information and identify potential biases or errors.

Policy enforcement is crucial for establishing clear guidelines for the handling of LLM training data. These policies should outline acceptable data sources, permissible data types, and restrictions on data access and usage.

Access controls should be implemented to restrict access to LLM training data to authorized personnel and identities only, including third party apps that may connect. This can be achieved through role-based access control (RBAC), zero-trust IAM, and multi-factor authentication (MFA) mechanisms.

Continuous monitoring is essential for detecting and responding to potential threats and vulnerabilities. Organizations should implement real-time monitoring tools to identify suspicious activity and take timely action to prevent data breaches.

Solutions: Leveraging Technology to Safeguard Data

In the rush to innovate, developers must remain keenly aware of the inherent risks involved with training LLMs if they wish to deliver responsible, effective AI that does not jeopardize their customer's data.  Specifically, it is a foremost duty to protect the integrity and privacy of LLM training data sets, which often contain sensitive information.

Preventing data leakage or public disclosure, avoiding overly permissive configurations, and negating bias or error that can contaminate such models should be top priorities.

Technological solutions play a pivotal role in safeguarding data integrity and privacy during LLM training. Data security posture management (DSPM) solutions can automate data security processes, enabling organizations to maintain a comprehensive data protection posture.

DSPM solutions provide a range of capabilities, including data discovery, data classification, data access governance (DAG), and data detection and response (DDR). These capabilities help organizations identify sensitive data, enforce access controls, detect data breaches, and respond to security incidents.

Cloud-native DSPM solutions offer enhanced agility and scalability, enabling organizations to adapt to evolving data security needs and protect data across diverse cloud environments.

Sentra: Automating LLM Data Security Processes

Having to worry about securing yet another threat vector should give overburdened security teams pause. But help is available.

Sentra has developed a data privacy and posture management solution that can automatically secure LLM training data in support of rapid AI application development.

The solution works in tandem with AWS SageMaker, GCP Vertex AI, or other AI IDEs to support secure data usage within ML training activities.  The solution combines key capabilities including DSPM, DAG, and DDR to deliver comprehensive data security and privacy.

Its cloud-native design discovers all of your data and ensures good data hygiene and security posture via policy enforcement, least privilege access to sensitive data, and monitoring and near real-time alerting to suspicious identity (user/app/machine) activity, such as data exfiltration, to thwart attacks or malicious behavior early. The solution frees developers to innovate quickly and for organizations to operate with agility to best meet requirements, with confidence that their customer data and proprietary information will remain protected.

LLMs are now also built into Sentra’s classification engine and data security platform to provide unprecedented classification accuracy for unstructured data. Learn more about Large Language Models (LLMs) here.

Conclusion: Securing the Future of AI with Data Privacy

AI holds immense potential to transform our world, but its development and deployment must be accompanied by a steadfast commitment to data integrity and privacy. Protecting the integrity and privacy of data in LLMs is essential for building responsible and ethical AI applications. By implementing data protection best practices, organizations can mitigate the risks associated with data leakage, unauthorized access, and bias. Sentra's DSPM solution provides a comprehensive approach to data security and privacy, enabling organizations to develop and deploy LLMs with speed and confidence.

If you want to learn more about Sentra's Data Security Platform and how LLMs are now integrated into our classification engine to deliver unmatched accuracy for unstructured data, request a demo today.

<blogcta-big>

David Stuart is Senior Director of Product Marketing for Sentra, a leading cloud-native data security platform provider, where he is responsible for product and launch planning, content creation, and analyst relations. Dave is a 20+ year security industry veteran having held product and marketing management positions at industry luminary companies such as Symantec, Sourcefire, Cisco, Tenable, and ZeroFox. Dave holds a BSEE/CS from University of Illinois, and an MBA from Northwestern Kellogg Graduate School of Management.

Subscribe

Latest Blog Posts

Asaf Kochan
Asaf Kochan
July 9, 2025
3
Min Read
Data Security

Data Security in 2025: Why DSPM Is Now a Business Imperative

Data Security in 2025: Why DSPM Is Now a Business Imperative

At RSAC 2025, I had the opportunity to speak with Adrian Sanabria about one of the most pressing and complex challenges facing security teams today: data security. Since then, the urgency around the future of data security has only intensified.

We're watching a major inflection point unfold across industries. Organizations are generating and storing more data than ever, while simultaneously adopting AI at a pace that outstrips most security programs. At the same time, regulators are enforcing data privacy with increasing sharpness. These trends all converge on one critical question:

 

Do you know where your sensitive data is - and who can access it?

If the answer is no, then it's time to rethink your approach.

Data is Now The Most Valuable, And Volatile Asset

For years, security tools have operated largely without visibility into the data itself. We've focused on endpoints, perimeters, and identities - all essential layers. But in 2025, that’s no longer sufficient.

Data is now the most valuable, and volatile asset most companies have. We’re seeing this in breach investigations, where the root cause often traces back to unmonitored or duplicated sensitive data left in the wrong place. We're seeing it in AI deployments, where teams rush to fine-tune models or deploy copilots without knowing what's inside the datasets they’re exposing. And we’re certainly seeing it in regulatory fines, many of which stem from nothing more than storing customer data longer than necessary, in the wrong place, or in unsecured formats.

What all of this underscores is a simple truth: you can’t protect what you can’t see.

The Role of DSPM in the Future of Data Security

At Sentra, we’ve built our platform around a core philosophy that Data Security Posture Management (DSPM) is not just a security tool, it’s the future of data security, an enabler of responsible innovation. The foundation starts with sensitive data discovery. Most organizations are surprised by how much sensitive data exists outside expected systems- in backups, temporary stores, or SaaS apps that were never properly offboarded. From there, classification adds context. It’s not enough to label something as “PII”, we need to understand how sensitive it is, who owns it, how it is being used, and how it should be governed.

We built Sentra as a cloud-native solution from day one. That means it works across IaaS, SaaS, PaaS, and even on-prem environments without needing agents or pulling data outside the customer’s environment. That last point is non-negotiable for us. As a security company, we believe strongly that extracting customer data for analysis creates unnecessary risk and liability.

To support classification at scale, especially for unstructured data, we developed our own language models using open-source LLMs. This provides the deep contextual understanding needed to accurately label large volumes of data all while maintaining cost efficiency and avoiding unnecessary compute overhead.

AI, Risk, and Responsibility in Data Securityy

One of the biggest shifts we’re seeing in the market is how AI has elevated data security from a technical concern to a boardroom issue. Security teams are now being asked to approve large-scale data usage for AI training, RAG systems, copilots, and internal assistants. But very few have the tools to answer basic questions about what’s in those datasets.

I’ve worked with customers who only realized after deploying AI that they had been exposing medical records, credentials, or confidential meeting data to the model. Once it’s in, you can’t pull it back. That’s why data classification and risk detection must come before any AI integration.

This is precisely the use case we had in mind when we built Sentra’s Data Security for AI Module. It helps teams scan, assess, and verify the contents of data before it ever touches a model. The goal isn’t to slow down innovation - it’s to make it safer, auditable, and repeatable.

Proactive Risk Management Helps Enterprises Ship Faster

One of the most exciting developments we’ve seen for the future of data security is how quickly Sentra’s data security platform becomes a strategic asset for enterprise data risk management. Time to value is fast in many cases, our customers discover major data risks just days after deployment. But beyond those early wins, the real power lies in alignment.

When security leaders can map data to risk, compliance, and governance frameworks, and do so continuously, they’re no longer operating reactively. They’re enabling the business, helping teams ship faster with fewer unknowns, and building trust around how AI and data are managed.

At scale, this kind of maturity is the difference between organizations that can confidently embrace generative AI and those that will always be playing catch-up.

A Final Word

From my time in the Israeli Defense Forces and Unit 8200 to helping enterprises build modern security programs, I’ve seen one truth over and over again: data left behind is data exposed. The volume may grow, the threats may change, but this principle doesn’t.

In 2025, securing data is no longer an aspiration, it’s a baseline. Whether you’re preparing for your next AI initiative, facing regulatory audits, or just trying to get visibility into sprawling cloud environments, DSPM should be your first step. At Sentra, we’re proud to help lead this change. And we believe the organizations that take control of their data today will be the ones best positioned to lead tomorrow.

<blogcta-big>

Read More
Team Sentra
Team Sentra
July 2, 2025
3
Min Read
Data Security

Data Blindness: The Hidden Threat Lurking in Your Cloud

Data Blindness: The Hidden Threat Lurking in Your Cloud

“If you don’t know where your sensitive data is, how can you protect it?”

It’s a simple question, but for many security and compliance teams, it’s nearly impossible to answer. When a Fortune 500 company recently paid millions in fines due to improperly stored customer data on an unmanaged cloud bucket, the real failure wasn’t just a misconfiguration. It was a lack of visibility.

Some in the industry are starting to refer to this challenge as "data blindness".

What Is Data Blindness?

Data Blindness refers to an organization’s inability to fully see, classify, and understand the sensitive data spread across its cloud, SaaS, and hybrid environments.

It’s not just another security buzzword. It’s the modern evolution of a very real problem: traditional data protection methods weren’t built for the dynamic, decentralized, and multi-cloud world we now operate in. Legacy DLP tools or one-time audits simply can’t keep up.

Unlike general data security issues, Data Blindness speaks to a specific kind of operational gap: you can’t protect what you can’t see, and most teams today are flying partially blind.

Why Data Blindness Is Getting Worse

What used to be a manageable gap in visibility has now escalated into a full-scale operational risk. As organizations accelerate cloud adoption and embrace SaaS-first architectures, the complexity of managing sensitive data has exploded. Information no longer lives in a few centralized systems, it’s scattered across AWS, Azure, and GCP instances, and a growing stack of SaaS tools, each with its own storage model, access controls, and risk profile.

At the same time, shadow data is proliferating. Sensitive information ends up in collaboration platforms, forgotten test environments, and unsanctioned apps - places that rarely make it into formal security inventories. And with the rise of generative AI tools, a new wave of unstructured content is being created and shared at scale, often without proper visibility or retention controls in place.

To make matters worse, many organizations are still operating with outdated identity and access frameworks. Stale permissions and misconfigured policies allow unnecessary access to critical data, dramatically increasing the potential impact of both internal mistakes and external breaches.

In short, the cloud hasn’t just moved the data, it’s multiplied it, fragmented it, and made it harder than ever to track. Without continuous, intelligent visibility, data blindness becomes the default.

The Hidden Risks of Operating Blind

When teams don’t have visibility into where sensitive data lives or how it moves, the consequences stack up quickly:

  • Compliance gaps: Regulations like GDPR, HIPAA, and PCI-DSS demand accurate data inventories, privacy adherence, and prompt response to DSARs. Without visibility, you risk fines and legal exposure.

  • Breach potential: Blind spots become attack vectors. Misplaced data, overexposed buckets, or forgotten environments are easy targets.

  • Wasted resources: Scanning everything (just in case) is expensive. Without prioritization, teams waste cycles on low-risk data.

  • Trust erosion: Customers expect you to know where their data is and how it’s protected. Data blindness isn’t a good look.

Do You Have Data Blindness? Here Are the Signs

  • Your security team can’t confidently answer, “Where is our most sensitive data and who has access to it?”

  • Data inventories are outdated, or built on manual tagging and spreadsheets.

  • You’re still relying on legacy DLP tools with poor context and high false positives.

  • Incident response is slow because it’s unclear what data was touched or how sensitive it was.

Sound familiar? You’re not alone.

Breaking Free from Data Blindness

Solving data blindness starts with visibility, but real progress comes from turning that visibility into action. Modern organizations need more than one-off audits or static reports. They need continuous data discovery that scans cloud, SaaS, and on-prem environments in real time, keeping up with the constant movement of data.

But discovery alone isn’t enough. Classification must go beyond content analysis, it needs to be context-aware, taking into account where the data lives, who has access to it, how it’s used, and why it matters to the business. Visibility must extend to both structured and unstructured data, since sensitive information often hides in documents, PDFs, chat logs, and spreadsheets. And finally, insights need to be integrated into existing security and compliance workflows. Detection without action is just noise.

How Sentra Solves Data Blindness

At Sentra, we give security and privacy teams the visibility and context they need to take control of their data - without disrupting operations or moving it out of place. Our cloud-native DSPM (Data Security Posture Management) platform scans and classifies data in-place across cloud, SaaS, and on-prem environments, with no agents or data removal required.

Sentra uses AI-powered, context-rich classification to achieve over 95% accuracy, helping teams identify truly sensitive data and prioritize what matters most. We provide full coverage of structured and unstructured sources, along with real-time insights into risk exposure, access patterns, and regulatory posture, all with a cost-efficient scanning model that avoids unnecessary compute usage.

One customer reduced their shadow data footprint by 30% in just a few weeks, eliminating blind spots that their legacy tools had missed for years. That’s the power of visibility, backed by context, at scale.

The Bottom Line: Awareness Is Step One

Data Blindness is real, but it’s also solvable. The first step is acknowledging the problem. The next is choosing a solution that brings your data out of the dark, without slowing down your teams or compromising security.

If you’re ready to assess your current exposure or just want to see what’s possible with modern data security, you can take a free data blindness assessment, or talk to our experts to get started.

<blogcta-big>

Read More
Yoav Regev
Yoav Regev
June 12, 2025
3
Min Read
Data Security

Why Sentra Was Named Gartner Peer Insights Customer Choice 2025

Why Sentra Was Named Gartner Peer Insights Customer Choice 2025

When we started Sentra three years ago, we had a hypothesis: organizations were drowning in data they couldn't see, classify, or protect. What we didn't anticipate was how brutally honest our customers would be about what actually works, and what doesn't.

This week, Gartner named Sentra a "Customer's Choice" in their Peer Insights Voice of the Customer report for Data Security Posture Management. The recognition is based on over 650 verified customer reviews, giving us a 4.9/5 rating with 98% willing to recommend us.

The Accuracy Obsession Was Right

The most consistent theme across hundreds of reviews? Accuracy matters more than anything else.

"97.4% of Sentra's alerts in our testing were accurate! By far the highest percentage of any of the DSPM platforms that we tested."

"Sentra accurately identified 99% of PII and PCI in our cloud environments with minimal false positives during the POC."

But customers don't just want data discovery—they want trustworthy data discovery. When your DSPM tool incorrectly flags non-sensitive data as critical, teams waste time investigating false leads. When it misses actual sensitive data, you face compliance gaps and real risk. The reviews validate what we suspected: if security teams can't trust your classifications, the tool becomes shelf-ware. Precision isn't a nice-to-have—it's everything.

How Sentra Delivers Time-to-Value

Another revelation: customers don't just want fast deployment, they want fast insights.

"Within less than a week we were getting results, seeing where our sensitive data had been moved to."

"We were able to start seeing actionable insights within hours."

I used to think "time-to-value" was a marketing term. But when you're a CISO trying to demonstrate ROI to your board, or a compliance officer facing an audit deadline, every day matters. Speed isn’t a luxury in security, it’s a necessity. Data breaches don't wait for your security tools to finish their months-long deployment cycles. Compliance deadlines don't care about your proof-of-concept timeline. Security teams need to move at the speed of business risk.

The Honesty That Stings (And Helps)

But here's what really struck me: our customers were refreshingly honest about our shortcomings.

"The chatbot is more annoying than helpful."

"Currently there is no SaaS support for something like Salesforce."

"It's a startup so it has all the advantages and disadvantages that those come with."

As a founder, reading these critiques was... uncomfortable. But it's also incredibly valuable. Our customers aren't just users, they're partners in our product evolution. They're telling us exactly where to invest our engineering resources.

The Salesforce integration requests, for instance, showed up in nearly every "dislike" section. Message received. We're shipping SaaS connectors specifically because it’s a top priority for our customers.

What Gartner Customer Choice Trends Reveal About the DSPM Market

Analyzing 650 reviews across 9 vendors revealed something fascinating about our market's maturity. Customers aren't just comparing features, they're comparing outcomes.

The traditional data security playbook focused on coverage: "How many data sources can you scan?" But customers are asking different questions:

  • How accurate are your findings?
  • How quickly can I act on your insights?
  • How much manual work does this actually eliminate?

This shift from inputs to outcomes suggests the DSPM market is maturing rapidly. 

The Gartner Voice of the Customer Validated

Perhaps the most meaningful insight came from what customers didn't say. I expected more complaints about deployment complexity, integration challenges, or learning curves. Instead, review after review mentioned how quickly teams became productive with Sentra.

"It was also the fastest set up."

"Quick setup and responsive support."

"The platform is intuitive and offers immediate insights."

This tells me we're solving a real problem in a way that feels natural to security teams. The best products don't just work, they feel inevitable once you use them.

The Road Ahead: Learning from Gartner Choice Recognition

These reviews crystallized our 2025 roadmap priorities:

1. SaaS-First Expansion: Every customer asked for broader SaaS coverage. We're expanding beyond IaaS to support the applications where your most sensitive data actually lives. Our mission is to secure data everywhere.

2. AI Enhancement: Our classification engine is industry-leading, but customers want more. We're building contextual AI that doesn't just find data, it understands data relationships and business impact.

3. Remediation Automation: Customers love our visibility but want more automated remediation. We're moving beyond recommendations to actual risk mitigation.

A Personal Thank You

To the customers who contributed to our Sentra Gartner Peer Insights success: thank you. Building a startup is often a lonely journey of best guesses and gut instincts. Your feedback is the compass that keeps us pointed toward solving real problems.

To the security professionals reading this: your honest feedback (both praise and criticism) makes our products better. If you're using Sentra, please keep telling us what's working and what isn't. If you're not, I'd love to show you what earned us Customer Choice 2025 recognition and why 98% of our customers recommend us.

The data security landscape is evolving rapidly. But with customers as partners and recognition like Gartner Peer Insights Customer Choice 2025, I'm confident we're building tools that don't just keep up with threats, they help organizations stay ahead of them.

<blogcta-big>

Read More
decorative ball
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security. Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!