All Resources
In this article:
minus iconplus icon
Share the Article

Data Leakage Detection for AWS Bedrock

July 15, 2024
4
 Min Read
Data Security

Amazon Bedrock is a fully managed service that streamlines access to top-tier foundation models (FMs) from premier AI startups and Amazon, all through a single API. This service empowers users to leverage cutting-edge generative AI technologies by offering a diverse selection of high-performance FMs from innovators like AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon itself. Amazon Bedrock allows for seamless experimentation and customization of these models to fit specific needs, employing techniques such as fine-tuning and Retrieval Augmented Generation (RAG).

 

Additionally, it supports the development of agents capable of performing tasks with enterprise systems and data sources. As a serverless offering, it removes the complexities of infrastructure management, ensuring secure and easy deployment of generative AI features within applications using familiar AWS services, all while maintaining robust security, privacy, and responsible AI standards.

Why Are Enterprises Using AWS Bedrock

Enterprises are increasingly using AWS Bedrock for several key reasons:

  • Diverse Model Selection: Offers access to a curated selection of high-performing foundation models (FMs) from both leading AI startups and Amazon itself, providing a comprehensive range of options to suit various use cases and preferences. This diversity allows enterprises to select the most suitable models for their specific needs, whether they require language generation, image processing, or other AI capabilities.
  • Streamlined Integration: Simplifies the process of adopting and integrating generative AI technologies into existing systems and applications. With its unified API and serverless architecture, enterprises can seamlessly incorporate these advanced AI capabilities without the need for extensive infrastructure management or specialized expertise. This streamlines the development and deployment process, enabling faster time-to-market for AI-powered solutions.
  • Customization Capabilities: Facilitates experimentation and customization, allowing enterprises to fine-tune and adapt the selected models to better align with their unique requirements and data environments. Techniques such as fine-tuning and Retrieval Augmented Generation (RAG) enable enterprises to refine the performance and accuracy of the models, ensuring optimal results for their specific use cases.
  • Security and Compliance Focus: Prioritizes security, privacy, and responsible AI practices, providing enterprises with the confidence that their data and AI deployments are protected and compliant with regulatory standards. By leveraging AWS's robust security infrastructure and compliance measures, enterprises can deploy generative AI applications with peace of mind.

AWS Bedrock Data Privacy & Security Concerns

The rise of AI technologies, while promising transformative and major benefits, also introduces significant security risks. As enterprises increasingly integrate AI into their operations, like with AWS Bedrock, they face challenges related to data privacy, model integrity, and ethical use. AI systems, particularly those involving generative models, can be susceptible to adversarial attacks, unintended data extraction, and unintended biases, which can lead to compromised data security and regulatory violations. 

Training Data Concerns

Training data is the backbone of machine learning and artificial intelligence systems. The quality, diversity, and integrity of this data are critical for building robust models. However, there are significant risks associated with inadvertently using sensitive data in training datasets, as well as the unintended retrieval and leakage of such data. 

These risks can have severe consequences, including breaches of privacy, legal repercussions, and erosion of public trust.

Accidental Usage of Sensitive Data in Training Sets

Inadvertently including sensitive data in training datasets can occur for various reasons, such as insufficient data vetting, poor anonymization practices, or errors in data aggregation. Sensitive data may encompass personally identifiable information (PII), financial records, health information, intellectual property, and more.

 

The consequences of training models on such data are multifaceted:

  • Data Privacy Violations: When models are trained on sensitive data, they might inadvertently learn and reproduce patterns that reveal private information. This can lead to direct privacy breaches if the model outputs or intermediate states expose this data.
  • Regulatory Non-Compliance: Many jurisdictions have stringent regulations regarding the handling and processing of sensitive data, such as GDPR in the EU, HIPAA in the US, and others. Accidental inclusion of sensitive data in training sets can result in non-compliance, leading to heavy fines and legal actions.
  • Bias and Ethical Concerns: Sensitive data, if not properly anonymized or aggregated, can introduce biases into the model. For instance, using demographic data can inadvertently lead to models that discriminate against certain groups.

These risks require strong security measures and responsible AI practices to protect sensitive information and comply with industry standards. AWS Bedrock provides a ready solution to power foundation models and Sentra provides a complementary solution to ensure compliance and integrity of data these models use and output. Let’s explore how this combination and each component delivers its respective capility.

Prompt Response Monitoring With Sentra

Sentra can detect sensitive data leakage in near real-time by scanning and classifying all prompt responses generated by AWS Bedrock, by analyzing them using Sentra’s Data Detection and Response (DDR) security module.

Data exfiltration might occur if AWS Bedrock prompt responses are used to return data outside of an organization - for example using a chatbot interface connected directly to a user facing application.

By analyzing the prompt responses, Sentra can ensure that both sensitive data acquired through fine-tuning models and data retrieved using Retrieval-Augmented Generation (RAG) methods are protected. This protection is effective within minutes of any data exfiltration attempt.

To activate the detection module, there are 3 prerequisites:

  1. The customer should enable AWS Bedrock Model Invocation Logging to an S3 destination(instructions here) in the customer environment.
  2. A new Sentra tenant for the customer should be created/set up.
  3. The customer should install the Sentra copy Lambda using Sentra’s Cloudformation template for its DDR module (documentation provided by Sentra).

Once the prerequisites are fulfilled, Sentra will automatically analyze the prompt responses and will be able to provide real-time security threat alerts based on the defined set of policies configured for the customer at Sentra.

Here is the full flow which describes how Sentra scans the prompts in near real-time:

  1. Sentra’s setup involves using AWS Lambda to handle new files uploaded to the Sentra S3 bucket configured in customer cloud, which logs all responses from AWS Bedrock prompts. When a new file arrives, our Lambda function copies it into Sentra’s prompt response buckets.
  2. Next, another S3 trigger kicks off enrichment of each response with extra details needed for detecting sensitive information.
  3. Our real-time data classification engine then gets to work, sorting the data from the responses into categories like emails, phone numbers, names, addresses, and credit card info. It also identifies the context, such as intellectual property or customer data.
  4. Finally, Sentra uses this classified information to spot any sensitive data. We then generate an alert and notify our customers, also sending the alert to any relevant downstream systems.
Data Flow Customer AWS Cloud Sentra

Sentra can push these alerts downstream into 3rd party systems, such as SIEMs, SOARs, ticketing systems, and messaging systems (Slack, Teams, etc.).

Sentra’s data classification engine provides three methods of classification:

  • Regular expressions
  • List classifiers
  • AI models

Further, Sentra allows the customer to add its own classifiers for their own business-specific needs, apart from the 150+ data classifiers which Sentra provides out of the box.

Sentra’s sensitive data detection also provides control for setting a threshold of the amount of sensitive data exfiltrated through Bedrock over time (similar to a rate limit) to reduce the rate of false positives for non-critical exfiltration events.

Example threat sensitive customer data found in Amazon Bedrock response

Conclusion

There is a pressing push for AI integration and automation to enable businesses to improve agility, meet growing cloud service and application demands, and improve user experiences  - but to do so while simultaneously minimizing risks. Early warning to potential sensitive data leakage or breach is critical to achieving this goal.

Sentra's data security platform can be used in the entire development pipeline to classify, test and verify that models do not leak sensitive information, serving the developers, but also helping them to increase confidence among their buyers. By adopting Sentra, organizations gain the ability to build out automation for business responsiveness and improved experiences, with the confidence knowing their most important asset — their data — will remain secure.

If you want to learn more, request a live demo with our data security experts.

<blogcta-big>

Discover Ron’s expertise, shaped by over 20 years of hands-on tech and leadership experience in cybersecurity, cloud, big data, and machine learning. As a serial entrepreneur and seed investor, Ron has contributed to the success of several startups, including Axonius, Firefly, Guardio, Talon Cyber Security, and Lightricks, after founding a company acquired by Oracle.

Subscribe

Latest Blog Posts

Dean Taler
Dean Taler
September 16, 2025
5
Min Read
Compliance

How to Write an Effective Data Security Policy

How to Write an Effective Data Security Policy

Introduction: Why Writing Good Policies Matters

In modern cloud and AI-driven environments, having security policies in place is no longer enough. The quality of those policies directly shapes your ability to prevent data exposure, reduce noise, and drive meaningful response. A well-written policy helps to enforce real control and provides clarity in how to act. A poorly written one, on the other hand, fuels alert fatigue, confusion, or worse - blind spots.

This article explores how to write effective, low-noise, action-oriented security policies that align with how data is actually used.

What Is a Data Security Policy?

A data security policy is a set of rules that defines how your organization handles sensitive data. It specifies who can access what information, under what conditions, and what happens when those rules are violated. But here's the key difference: a good data security policy isn't just a document that sits in a compliance folder. It's an active control that detects risky behavior and triggers specific responses. While many organizations write policies that sound impressive but create endless alerts, effective policies target real risks and drive meaningful action. The goal isn't to monitor everything, it's to catch the activities that actually matter and respond quickly when they happen.

What Makes a Data Security Policy “Good”?

Before you begin drafting, ask yourself: what problem is this policy solving, and why does it matter? 

A good data security policy isn’t just a technical rule sitting in a console, it’s a sensor for meaningful risk. It should define what activity you want to detect, under what conditions it should trigger, and who or what is in scope, so that it avoids firing on safe, expected scenarios.

Key characteristics of an effective policy:

  • Clear intent: protects against a well-defined risk, not a vague category of threats.
  • Actionable outcome: leads to a specific, repeatable response.
  • Low noise: triggers only on unusual or risky patterns, not normal operations.
  • Context-aware: accounts for business processes and expected data use.

💡 Tip: If you can’t explain in one sentence what you want to detect and what action should happen when it triggers, your policy isn’t ready for production.

Turning Risk Into Actionable Policy

Data security policies should always be grounded in real business risk, not just what’s technically possible to monitor. A strong policy targets scenarios that could genuinely harm the organization if left unchecked.

Questions to ask before creating a policy:

  • What specific behavior poses a risk to our sensitive or regulated data?
  • Who might trigger it, and why? Is it more likely to be malicious, accidental, or operational?
  • What exceptions or edge cases should be allowed without generating noise?
  • What systems will enforce it and who owns the response when it fires?

Instead of vague statements like “No access to PII”, write with precision:


“Block and alert on external sharing of customer PII from corporate cloud storage to any domain not on the approved partner list, unless pre-approved via the security exception process.”

Recommendations:

  • Treat policies like code - start them in monitor-only mode.
  • Test both sides: validate true positives (catching risky activity) and avoid false positives (triggering on normal behavior).

💡 Tip: The best policies are precise enough to detect real risks, but tested enough to avoid drowning teams in noise.

A Good Data Security Policy Should Drive Action

Policies are only valuable if they lead to a decision or action. Without a clear owner or remediation process, alerts quickly become noise. Every policy should generate an alert that leads to accountability.

Questions to ask:

  • Who owns the alert?
  • What should happen when it fires?
  • How quickly should it be resolved?

💡 Tip: If no one is responsible for acting on a policy’s alerts, it’s not a policy — it’s background noise.

Don’t Ignore the Noise

When too many alerts fire, it’s tempting to dismiss them as an annoyance. But noisy policies are often a signal, not a mistake. Sometimes policies are too broad or poorly scoped. Other times, they point to deeper systemic risks, such as overly open sharing practices or misconfigured controls.

Recommendations:

  • Investigate noisy policies before silencing them.
  • Treat excess alerts as a clue to systemic risk.

💡 Tip: A noisy policy may be exposing the exact weakness you most need to fix.

Know When to Adjust or Retire a Policy

Policies must evolve as your organization, tools, and data change. A rule that made sense last year might be irrelevant or counterproductive today.

Recommendations:

  • Continuously align policies with evolving risks.
  • Track key metrics: how often it triggers, severity, and response actions.
  • Optimize response paths so alerts reach the right owners quickly.
  • Schedule quarterly or biannual reviews with both security and business stakeholders.

💡 Tip: The only thing worse than no policy is a stale one that everyone ignores.

Why Smart Policies Matter for Regulated Data

Data security policies aren’t just an internal safeguard, they are how compliance is enforced in practice. Regulations like GDPR, HIPAA, and PCI DSS require demonstrable control over sensitive data.

Poorly written policies generate alert fatigue, making it harder to detect real violations. Well-crafted ones reduce the risk of noncompliance, streamline audits, and improve breach response.

Recommendations:

  • Map each policy directly to a specific regulatory requirement.
  • Retire rules that create noise without reducing actual risk.

💡 Tip: If a policy doesn’t map to a regulation or a real risk, it’s adding effort without adding value.

Making Policy Creation Simple, Powerful, and Built for Results 

An effective solution for policy creation should make it easy to get started, provide the flexibility to adapt to your unique environment, and give you the deep data context you need to make policies that actually work. It should streamline the process so you can move quickly without sacrificing control, compliance, or clarity.

Sentra is that solution. By combining intuitive policy building with deep data context, Sentra simplifies and strengthens the entire lifecycle of policy creation.

With Sentra, you can:

  • Start fast with out-of-the-box, low-noise controls.
  • Create custom policies without complexity.
  • Leverage real-time knowledge of where sensitive data lives and who has access to it.
  • Continuously tune for low noise with performance metrics.
  • Understand which regulations you can adhere to

💡 Tip: The true value of a policy isn’t how often it triggers, it’s whether it consistently drives the right response.

Good Policies Start with Good Visibility

The best data security policies are written by teams who know exactly where sensitive data lives, how it moves, who can access it, and what creates risk. Without that visibility, policy writing becomes guesswork. With it, enforcement becomes simple, effective, and sustainable.

At Sentra, we believe policy creation should be driven by real data, not assumptions. If you’re ready to move from reactive alerts to meaningful control.

<blogcta-big>

Read More
Nikki Ralston
Nikki Ralston
Gilad Golani
Gilad Golani
September 3, 2025
5
Min Read
Data Loss Prevention

Supercharging DLP with Automatic Data Discovery & Classification of Sensitive Data

Supercharging DLP with Automatic Data Discovery & Classification of Sensitive Data

Data Loss Prevention (DLP) is a keystone of enterprise security, yet traditional DLP solutions continue to suffer from high rates of both false positives and false negatives, primarily because they struggle to accurately identify and classify sensitive data in cloud-first environments.

New advanced data discovery and contextual classification technology directly addresses this gap, transforming DLP from an imprecise, reactive tool into a proactive, highly effective solution for preventing data loss.

Why DLP Solutions Can’t Work Alone

DLP solutions are designed to prevent sensitive or confidential data from leaving your organization, support regulatory compliance, and protect intellectual property and reputation. A noble goal indeed.  Yet DLP projects are notoriously anxiety-inducing for CISOs. On the one hand,  they often generate a high amount of false positives that disrupt legitimate business activities and further exacerbate alert fatigue for security teams.

What’s worse than false positives? False negatives. Today traditional DLP solutions too often fail to prevent data loss because they cannot efficiently discover and classify sensitive data in dynamic, distributed, and ephemeral cloud environments.

Traditional DLP faces a twofold challenge: 

  • High False Positives: DLP tools often flag benign or irrelevant data as sensitive, overwhelming security teams with unnecessary alerts and leading to alert fatigue.

  • High False Negatives: Sensitive data is frequently missed due to poor or outdated classification, leaving organizations exposed to regulatory, reputational, and operational risks.

These issues stem from DLP’s reliance on basic pattern-matching, static rules, and limited context. As a result, DLP cannot keep pace with the ways organizations use, store, and share data, resulting in the dual-edged sword of both high false positives and false negatives. Furthermore, the explosion of unstructured data types and shadow IT creates blind spots that traditional DLP solutions cannot detect. As a result, DLP often can’t  keep pace with the ways organizations use, store, and share data. It isn’t that DLP solutions don’t work, rather they lack the underlying discovery and classification of sensitive data needed to work correctly.

AI-Powered Data Discovery & Classification Layer

Continuous, accurate data classification is the foundation for data security. An AI-powered data discovery and classification platform can act as the intelligence layer that makes DLP work as intended. Here’s how Sentra complements the core limitations of DLP solutions:

1. Continuous, Automated Data Discovery

  • Comprehensive Coverage: Discovers sensitive data across all data types and locations - structured and unstructured sources, databases, file shares, code repositories, cloud storage, SaaS platforms, and more.

  • Cloud-Native & Agentless: Scans your entire cloud estate (AWS, Azure, GCP, Snowflake, etc.) without agents or data leaving your environment, ensuring privacy and scalability.
  • Shadow Data Detection: Uncovers hidden or forgotten (“shadow”) data sets that legacy tools inevitably miss, providing a truly complete data inventory.

2. Contextual, Accurate Classification

  • AI-Driven Precision: Sentra proprietary LLMs and hybrid models achieve over 95% classification accuracy, drastically reducing both false positives and false negatives.

  • Contextual Awareness: Sentra goes beyond simple pattern-matching to truly understand business context, data lineage, sensitivity, and usage, ensuring only truly sensitive data is flagged for DLP action.
  • Custom Classifiers: Enables organizations to tailor classification to their unique business needs, including proprietary identifiers and nuanced data types, for maximum relevance.

3. Real-Time, Actionable Insights

  • Sensitivity Tagging: Automatically tags and labels files with rich metadata, which can be fed directly into your DLP for more granular, context-aware policy enforcement.

  • API Integrations: Seamlessly integrates with existing DLP, IR, ITSM, IAM, and compliance tools, enhancing their effectiveness without disrupting existing workflows.
  • Continuous Monitoring: Provides ongoing visibility and risk assessment, so your DLP is always working with the latest, most accurate data map.

How Sentra Supercharges DLP Solutions

How Sentra supercharges DLP solutions

Better Classification Means Less Noise, More Protection

  • Reduce Alert Fatigue: Security teams focus on real threats, not chasing false alarms, which results in better resource allocation and faster response times.

  • Accelerate Remediation: Context-rich alerts enable faster, more effective incident response, minimizing the window of exposure.

  • Regulatory Compliance: Accurate classification supports GDPR, PCI DSS, CCPA, HIPAA, and more, reducing audit risk and ensuring ongoing compliance.

  • Protect IP and Reputation: Discover and secure proprietary data, customer information, and business-critical assets, safeguarding your organization’s most valuable resources.

Why Sentra Outperforms Legacy Approaches

Sentra’s hybrid classification framework combines rule-based systems for structured data with advanced LLMs and zero-shot learning for unstructured and novel data types.

This versatility ensures:

  • Scalability: Handles petabytes of data across hybrid and multi-cloud environments, adapting as your data landscape evolves.
  • Adaptability: Learns and evolves with your business, automatically updating classifications as data and usage patterns change.
  • Privacy: All scanning occurs within your environment - no data ever leaves your control, ensuring compliance with even the strictest data residency requirements.

Use Case: Where DLP Alone Fails, Sentra Prevails

A financial services company uses a leading DLP solution to monitor and prevent the unauthorized sharing of sensitive client information, such as account numbers and tax IDs, across cloud storage and email. The DLP is configured with pattern-matching rules and regular expressions for identifying sensitive data.

What Goes Wrong:


An employee uploads a spreadsheet to a shared cloud folder. The spreadsheet contains a mix of client names, account numbers, and internal project notes. However, the account numbers are stored in a non-standard format (e.g., with dashes, spaces, or embedded within other text), and the file is labeled with a generic name like “Q2_Projects.xlsx.” The DLP solution, relying on static patterns and file names, fails to recognize the sensitive data and allows the file to be shared externally. The incident goes undetected until a client reports a data breach.

How Sentra Solves the Problem:


To address this, the security team set out to find a solution capable of discovering and classifying unstructured data without creating more overhead. They selected Sentra for its autonomous ability to continuously discover and classify all types of data across their hybrid cloud environment. Once deployed, Sentra immediately recognizes the context and content of files like the spreadsheet that enabled the data leak. It accurately identifies the embedded account numbers—even in non-standard formats—and tags the file as highly sensitive.

This sensitivity tag is automatically fed into the DLP, which then successfully enforces strict sharing controls and alerts the security team before any external sharing can occur. As a result, all sensitive data is correctly classified and protected, the rate of false negatives was dramatically reduced, and the organization avoids further compliance violations and reputational harm.

Getting Started with Sentra is Easy

  1. Deploy Agentlessly: No complex installation. Sentra integrates quickly and securely into your environment, minimizing disruption.

  2. Automate Discovery & Classification: Build a living, accurate inventory of your sensitive data assets, continuously updated as your data landscape changes.

  3. Enhance DLP Policies: Feed precise, context-rich sensitivity tags into your DLP for smarter, more effective enforcement across all channels.

  4. Monitor Continuously: Stay ahead of new risks with ongoing discovery, classification, and risk assessment, ensuring your data is always protected.

“Sentra’s contextual classification engine turns DLP from a reactive compliance checkbox into a proactive, business-enabling security platform.”

Fuel DLP with Automatic Discovery & Classification

DLP is an essential data protection tool, but without accurate, context-aware data discovery and classification, it’s incomplete and often ineffective. Sentra supercharges your DLP with continuous data discovery and accurate classification, ensuring you find and protect what matters most—while eliminating noise, inefficiency, and risk. 

Ready to see how Sentra can supercharge your DLP? Contact us for a demo today.

<blogcta-big>

Read More
Veronica Marinov
Veronica Marinov
Romi Minin
Romi Minin
May 15, 2025
5
Min Read
AI and ML

Ghosts in the Model: Uncovering Generative AI Risks

Ghosts in the Model: Uncovering Generative AI Risks

Generative AI risks are no longer hypothetical. They’re shaping the way enterprises think about cloud security. As artificial intelligence (AI) becomes deeply integrated into enterprise workflows, organizations are increasingly leveraging cloud-based AI services to enhance efficiency and decision-making.

In 2024, 56% of organizations adopted AI to develop custom applications, with 39% of Azure users leveraging Azure OpenAI services. However, with rapid AI adoption in cloud environments, security risks are escalating. As AI continues to shape business operations, the security and privacy risks associated with cloud-based AI services must not be overlooked. Understanding these risks (and how to mitigate them) is essential for organizations looking to protect their proprietary models and sensitive data.

‍Types of Generative AI Risks in Cloud Environments

When discussing AI services in cloud environments, there are two primary types of services that introduce different types of security and privacy risks. This article dives into these risks and explores best practices to mitigate them, ensuring organizations can leverage AI securely and effectively.

1. Data Exposure and Access Risks in Generative AI Platforms

Examples include OpenAI, Google, Meta, and Microsoft, which develop large-scale AI models and provide AI-related services, such as Azure OpenAI, Amazon Bedrock, Google’s Bard, Microsoft Copilot Studio. These services allow organizations to build AI Agents and GenAI services that  are designed to help users perform tasks more efficiently by integrating with existing tools and platforms. For instance, Microsoft Copilot can provide writing suggestions, summarize documents, or offer insights within platforms like Word or Excel, though securing regulated data in Microsoft 365 Copilot requires specific security considerations..

What is RAG (Retrieval-Augmented Generation)?

Many AI systems use Retrieval-Augmented Generation (RAG) to improve accuracy. Instead of solely relying on a model’s pre-trained knowledge, RAG allows the system to fetch relevant data from external sources, such as a vector database, using algorithms like k-nearest neighbor. This retrieved information is then incorporated into the model’s response.

When used in enterprise AI applications, RAG enables AI agents to provide contextually relevant responses. However, it also introduces a risk - if access controls are too broad, users may inadvertently gain access to sensitive corporate data.

How Does RAG (Retrieval-Augmented Generation) Apply to AI Agents?

In AI agents, RAG is typically used to enhance responses by retrieving relevant information from a predefined knowledge base.

Example: In AWS Bedrock, you can define a serverless vector database in OpenSearch as a knowledge base for a custom AI agent. This setup allows the agent to retrieve and incorporate relevant context dynamically, effectively implementing RAG.

Generative AI Risks and Security Threats of AI Platforms

Custom generative AI applications, such as AI agents or enterprise-built copilots, are often integrated with organizational knowledge bases like Amazon S3, SharePoint, Google Drive, and other data sources. While these models are typically not directly trained on sensitive corporate data, the fact that they can access these sources creates significant security risks.

One potential generative AI risk is data exposure through prompts, but this only arises under certain conditions. If access controls aren’t properly configured, users interacting with AI agents might unintentionally or maliciously - prompt the model to retrieve confidential or private information.This isn’t limited to cleverly crafted prompts; it reflects a broader issue of improper access control and governance.

Configuration and Access Control Risks

The configuration of the AI agent is a critical factor. If an agent is granted overly broad access to enterprise data without proper role-based restrictions, it can return sensitive information to users who lack the necessary permissions. For instance, a model connected to an S3 bucket with sensitive customer data could expose that data if permissions aren’t tightly controlled. Simple misconfigurations can lead to serious data exposure incidents, even in applications designed for security.

A common scenario might involve an AI agent designed for Sales that has access to personally identifiable information (PII) or customer records. If the agent is not properly restricted, it could be queried by employees outside of Sales, such as developers - who should not have access to that data.

Example Generative AI Risk Scenario

An employee asks a Copilot-like agent to summarize company-wide sales data. The AI returns not just high-level figures, but also sensitive customer or financial details that were unintentionally exposed due to lax access controls.

Challenges in Mitigating Generative AI Risks

The core challenge, particularly relevant to platforms like Sentra, is enforcing governance to ensure only appropriate data is used and accessible by AI services.

This includes:

  • Defining and enforcing granular data access controls.
  • Preventing misconfigurations or overly permissive settings.
  • Maintaining real-time visibility into which data sources are connected to AI models.
  • Continuously auditing data flows and access patterns to prevent leaks.

Without rigorous governance and monitoring, even well-intentioned GenAI implementations can lead to serious data security incidents.

2. ML and AI Studios for Building New Models

Many companies, such as large financial institutions, build their own AI and ML models to make better business decisions, or to improve their user experiences. Unlike large foundational models from major tech companies, these custom AI models are trained by the organization itself on their applications or corporate data.

Security Risks of Custom AI Models

  1. Weak Data Governance Policies - If data governance policies are inadequate, sensitive information, such as customers' Personally Identifiable Information (PII), could be improperly accessed or shared during the training process. This can lead to data breaches, privacy compliance violations, and unethical AI usage. The growing recognition of generative AI-related risks has driven the development of more AI compliance frameworks that are now being actively enforced with significant penalties..
  2. Excessive Access to Training Data and AI Models - Granting unrestricted access to training datasets and machine learning (ML)/AI models increases the risk of data leaks and misuse. Without proper access controls, sensitive data used in training can be exposed to unauthorized individuals, leading to compliance and security concerns.
  3. AI Agents Exposing Sensitive Data -  AI agents that do not have proper safeguards can inadvertently expose sensitive information to a broad audience within an organization. For example, an employee could retrieve confidential data such as the CEO’s salary or employment contracts if access controls are not properly enforced.
  4. Insecure Model Storage – Once a model is trained, it is typically stored in the same environment (e.g., in Amazon SageMaker, the training job stores the trained model in S3). If not properly secured, proprietary models could be exposed to unauthorized access, leading to risks such as model theft.
  5. Deployment Vulnerabilities – A lack of proper access controls can result in unauthorized use of AI models. Organizations need to assess who has access: Is the model public? Can external entities interact with or exploit it?

Shadow AI and Forgotten Assets – AI models or artifacts that are not actively monitored or properly decommissioned can become a security risk. These overlooked assets can serve as attack vectors if discovered by malicious actors.

Example Risk Scenario

A bank develops an AI-powered feature that predicts a customer’s likelihood of repaying a loan based on inputs like financial history, employment status, and other behavioral indicators. While this feature is designed to enhance decision-making and customer experience, it introduces significant generative AI risk if not properly governed.

During development and training, the model may be exposed to personally identifiable information (PII), such as names, addresses, social security numbers, or account details, which is not necessary for the model’s predictive purpose.

⚠️ Best practice: Models should be trained only on the minimum necessary data required for performance, excluding direct identifiers unless absolutely essential. This reduces both privacy risk and regulatory exposure.

If the training pipeline fails to properly separate or mask this PII, the model could unintentionally leak sensitive information. For example, when responding to an end-user query, the AI might reference or infer details from another individual’s record - disclosing sensitive customer data without authorization.

This kind of data leakage, caused by poor data handling or weak governance during training, can lead to serious regulatory non-compliance, including violations of GDPR, CCPA, or other privacy frameworks.

Common Risk Mitigation Strategies and Their Limitations

Many organizations attempt to manage generative AI-related risks through employee training and awareness programs. Employees are taught best practices for handling sensitive data and using AI tools responsibly.
While valuable, this approach has clear limitations:

  • Training Alone Is Insufficient:
    Human error remains a major risk factor, even with proper training. Employees may unintentionally connect sensitive data sources to AI models or misuse AI-generated outputs.

  • Lack of Automated Oversight:
    Most organizations lack robust, automated systems to continuously monitor how AI models use data and to enforce real-time security policies. Manual review processes are often too slow and incomplete to catch complex data access risks in dynamic, cloud-based AI environments.
  • Policy Gaps and Visibility Challenges:
    Organizations often operate with multiple overlapping data layers and services. Without clear, enforceable policies, especially automated ones - certain data assets may remain unscanned or unprotected, creating blind spots and increasing risk.

Reducing AI Risks with Sentra’s Comprehensive Data Security Platform

Managing generative AI risks in the cloud requires more than employee training.
Organizations need to adopt robust data governance frameworks and data security platforms (like Sentra’s) that address the unique challenges of AI.

This includes:

  • Discovering AI Assets: Automatically identify AI agents, knowledge bases, datasets, and models across the environment.
  • Classifying Sensitive Data: Use automated classification and tagging to detect and label sensitive information accurately.
    Monitoring AI Data Access: Detect which AI agents and models are accessing sensitive data, or using it for training - in real time.
  • Enforcing Access Governance: Govern AI integrations with knowledge bases by role, data sensitivity, location, and usage to ensure only authorized users can access training data, models, and artifacts.
  • Automating Data Protection: Apply masking, encryption, access controls, and other protection methods through automated remediation capabilities across data and AI artifacts used in training and inference processes.

By combining strong technical controls with ongoing employee training, organizations can significantly reduce the risks associated with AI services and ensure compliance with evolving data privacy regulations.

<blogcta-big>

Read More
decorative ball
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security.Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!