All Resources
In this article:
minus iconplus icon
Share the Blog

Understanding Data Movement to Avert Proliferation Risks

April 10, 2024
4
 Min Read
Data Sprawl

Understanding the perils your cloud data faces as it proliferates throughout your organization and ecosystems is a monumental task in the highly dynamic business climate we operate in. Being able to see data as it is being copied and travels, monitor its activity and access, and assess its posture allows teams to understand and better manage the full effect of data sprawl. 

It ‘connects the dots’ for security analysts who must continually evaluate true risks and threats to data so they can prioritize their efforts. Data similarity and movement are important behavioral indicators in assessing and addressing those risks. This blog will explore this topic in depth.

What Is Data Movement

Data movement is the process of transferring data from one location or system to another – from A to B. This transfer can be between storage locations, databases, servers, or network locations. Copying data from one location to another is simple, however, data movement can get complicated when managing volume, velocity, and variety.

  • Volume: Handling large amounts of data.
  • Velocity: Overseeing the pace of data generation and processing.
  • Variety: Managing a variety of data types.

How Data Moves in the Cloud

Data is free and can be shared anywhere. The way organizations leverage data is an integral part of their success. Although there are many business benefits to moving and sharing data (at a rapid pace), there are also many concerns that arise, mainly dealing with privacy, compliance, and security. Data needs to move quickly, securely, and have the proper security posture at all times.  

These are the main ways that data moves in the cloud:

1. Data Distribution in Internal Services: Internal services and applications manage data, saving it across various locations and data stores.

2. ETLs: Extract, Transform, Load processes, involve combining data from multiple sources into a central repository known as a data warehouse. This centralized view supports applications in aggregating diverse data points for organizational use.

3. Developer and Data Scientist Data Usage: Developers and data scientists utilize data for testing and development purposes. They require both real and synthetic data to test applications and simulate real-life scenarios to drive business outcomes.

4. AI/ML/LLM and Customer Data Integration: The utilization of customer data in AI/ML learning processes is on the rise. Organizations leverage such data to train models and apply the results across various organizational units, catering to different use-cases.

What Is Misplaced Data

"Misplaced data" refers to data that has been moved from an approved environment to an unapproved environment. For example, a folder that is stored in the wrong location within a computer system or network. This can result from human error, technical glitches, or issues with data management processes. 

When unauthorized data is stored in an environment that is not designed for the type of data, it can lead to data leaks, security breaches, compliance violations, and other negative outcomes.

With companies adopting more cloud services, and being challenged with properly managing the subsequent data sprawl, having misplaced data is becoming more common, which can lead to security, privacy, and compliance issues.

The Challenge of Data Movement and Misplaced Data

Organizations strive to secure their sensitive data by keeping it within carefully defined and secure environments. The pervasive data sprawl faced by nearly every organization in the cloud makes it challenging to effectively protect data, given its rapid multiplication and movement.

It is encouraged for business productivity to leverage data and use it for various purposes that can help enhance and grow the business. However, with the advantages, come disadvantages. There are risks to having multiple owners and duplicate data..

To address this challenge, organizations can leverage the analysis of similar data patterns to gain a comprehensive understanding on how data flows within the organization and help security teams first get visibility of those movement patterns, and then identify whether this movement is authorized. Then they can protect it accordingly and understand which unauthorized movement should be blocked.

This proactive approach allows them to position themselves strategically. It can involve ensuring robust security measures for data at each location, re-confining it by relocating, or eliminating unnecessary duplicates. Additionally, this analytical capability proves valuable in scenarios tied to regulatory and compliance requirements, such as ensuring GDPR - compliant data residency.

 Identifying Redundant Data and Saving Cloud Storage Costs

The identification of similarities empowers Chief Information Security Officers (CISOs) to implement best practices, steering clear of actions that lead to the creation of redundant data.

Detecting redundant data helps reduce cloud storage costs and drive up operational efficiency from targeted and prioritized remediation efforts that focus on the critical data risks that matter. 

This not only enhances data security posture, but also contributes to a more streamlined and efficient data management strategy.

“Sentra has helped us to reduce our risk of data breaches and to save money on cloud storage costs.”

-Benny Bloch, CISO at Global-e

Security Concerns That Arise

  1. Data Security Posture Variations Across Locations: Addressing instances where similar data, initially secure, experiences a degradation in security posture during the copying process (e.g., transitioning from private to public, or from encrypted to unencrypted).
  1. Divergent Access Profiles for Similar Data: Exploring scenarios where data, previously accessible by a limited and regulated set of identities, now faces expanded access by a larger number of identities (users), resulting in a loss of control.
  1. Data Localization and Compliance Violations: Examining situations where data, mandated to be localized in specific regions, is found to be in violation of organizational policies or compliance rules (with GDPR as a prominent example). By identifying similar sensitive data, we can pinpoint these issues and help users mitigate them.
  1. Anonymization Challenges in ETL Processes: Identifying issues in ETL processes where data is not only moved but also anonymized. Pinpointing similar sensitive data allows users to detect and mitigate anonymization-related problems.
  1. Customer Data Migration Across Environments: Analyzing the movement of customer data from production to development environments. This can be used by engineers to test real-life use-cases.
  2. Data Data Democratization and Movement Between Cloud and Personal Stores: Investigating instances where users export data from organizational cloud stores to personal drives (e.g., OneDrive) for purposes of development, testing, or further business analysis. Once this data is moved to personal data stores, it typically is less secure. This is due to the fact that these personal drives are less monitored and protected, and in control of the private entity (the employee), as opposed to the security/dev teams. These personal drives may be susceptible to security issues arising from misconfiguration, user mistakes or insufficient knowledge.

How Sentra’s DSPM Helps Navigate Data Movement Challenges

  1. Discover and accurately classify the most sensitive data and provide extensive context about it, for example:
  • Where it lives
  • Where it has been copied or moved to
  • Who has access to it
  1. Highlight misconfigurations by correlating similar data that has different security posture. This helps you pinpoint the issue and adjust it according to the right posture.
  2. Quickly identify compliance violations, such as GDPR - when European customer data moves outside of the allowed region, or when financial data moves outside a PCI compliant environment.
  3. Identify access changes, which helps you to understand the correct access profile by correlating similar data pieces that have different access profiles.

For example, the same data is well kept in a specific environment and can be accessed by 2 very specific users. When the same data moves to a developers environment, it can then be accessed by the whole data engineering team, which exposes more risks.

Leveraging Data Security Posture Management (DSPM) and Data Detection and Response (DDR) tools proves instrumental in addressing the complexities of data movement challenges. These tools play a crucial role in monitoring the flow of sensitive data, allowing for the swift remediation of exposure incidents and vulnerabilities in real-time. The intricacies of data movement, especially in hybrid and multi-cloud deployments, can be challenging, as public cloud providers often lack sufficient tooling to comprehend data flows across various services and unmanaged databases. 

Our innovative cloud DLP tooling takes the lead in this scenario, offering a unified approach by integrating static and dynamic monitoring through DSPM and DDR. This integration provides a comprehensive view of sensitive data within your cloud account, offering an updated inventory and mapping of data flows. Our agentless solution automatically detects new sensitive records, classifies them, and identifies relevant policies. In case of a policy violation, it promptly alerts your security team in real time, safeguarding your crucial data assets.

In addition to our robust data identification methods, we prioritize the implementation of access control measures. This involves establishing Role-based Access Control (RBAC) and Attribute-based Access Control (ABAC) policies, so that the right users have permissions at the right times.

Identifying data movement with Sentra

Identifying Data Movement With Sentra

Sentra has developed different methods to identify data movements and similarities based on the content of two assets. Our advanced capabilities allow us to pinpoint fully duplicated data, identify similar data, and even uncover instances of partially duplicated data that may have been copied or moved across different locations. 

Moreover, we recognize that changes in access often accompany the relocation of assets between different locations. 

As part of Sentra’s Data Security Posture Management (DSPM) solution, we proactively manage and adapt access controls to accommodate these transitions, maintaining the integrity and security of the data throughout its lifecycle.

These are the 3 methods we are leveraging:

  1. Hash similarity - Using each asset unique identifier to locate it across the different data stores of the customer environment.
  2. Schema similarity - Locate the exact or similar schemas that indicated that there might be similar data in them and then leverage other metadata and statistical methods to simplify the data and find necessary correlations.
  3. Entity Matching similarity - Detects when parts of files or tables are copied to another data asset. For example, an ETL that extracts only some columns from a table into a new table in a data warehouse. 

Another example would be if PII is found in a lower environment, Sentra could detect if this is real or mock customer PII, based on whether this PII was also found in the production environment.

PII found in a lower environment

Conclusion

Understanding and managing data sprawl are critical tasks in the dynamic business landscape. Monitoring data movement, access, and posture enable teams to comprehend the full impact of data sprawl, connecting the dots for security analysts in assessing true risks and threats. 

Sentra addresses the challenge of data movement by utilizing advanced methods like hash, schema, and entity similarity to identify duplicate or similar data across different locations. Sentra's holistic Data Security Posture Management (DSPM) solution not only enhances data security but also contributes to a streamlined data management strategy. 

The identified challenges and Sentra's robust methods emphasize the importance of proactive data management and security in the dynamic digital landscape.

To learn more about how you can enhance your data security posture, schedule a demo with one of our experts.

Ran is a passionate product and customer success leader with over 12 years of experience in the cybersecurity sector. He combines extensive technical knowledge with a strong passion for product innovation, research and development (R&D), and customer success to deliver robust, user-centric security solutions. His leadership journey is marked by proven managerial skills, having spearheaded multidisciplinary teams towards achieving groundbreaking innovations and fostering a culture of excellence. He started at Sentra as a senior product manager, and is currently Sentra's senior technical account manager in NYC.

Subscribe

Latest Blog Posts

Yair Cohen
Yair Cohen
September 10, 2024
4
Min Read
Data Security

How Does DSPM Safeguard Your Data When You Have CSPM/CNAPP

How Does DSPM Safeguard Your Data When You Have CSPM/CNAPP

After debuting in Gartner’s 2022 Hype Cycle, Data Security Posture Management (DSPM) has quickly become a transformative category and hot security topic. DSPM solutions are popping up everywhere, both as dedicated offerings and as add-on modules to established cloud native application protection platforms (CNAPP) or cloud security posture management (CSPM) platforms.

But which option is better: adding a DSPM module to one of your existing solutions or implementing a new DSPM-focused platform? On the surface, activating a module within a CNAPP/CSPM solution that your team already uses might seem logical. But, the real question is whether or not you can reap all of the benefits of a DSPM through an add-on module. While some CNAPP platforms offer a DSPM module, these add-ons lack a fully data-centric approach, which is required to make DSPM technology effective for a modern-day business with a sprawling data ecosystem. Let’s explore this further.

How are CNAPP/CSPM and DSPM Different?

While CNAPP/CSPM and DSPM seem similar and can be complementary in many ways, they are distinctly different in a few important ways. DSPMs are all about the data — protecting it no matter where it travels. CNAPP/CSPMs focus on detecting attack paths through cloud infrastructure. So naturally, they tie specifically to the infrastructure and lack the agnostic approach of DSPM to securing the underlying data.

Because a DSPM focuses on data posture, it applies to additional use cases that CNAPP/CSPM typically doesn’t cover. This includes data privacy and data protection regulations such as GDPR, PCI-DSS, etc., as well as data breach detection based on real-time monitoring for risky data access activity. Lastly, data at rest (such as abandoned shadow data) would not necessarily be protected by CNAPP/CSPM since, by definition, it’s unknown and not an active attack path.

What is a Data-Centric Approach?

A data-centric approach is the foundation of your data security strategy that prioritizes the secure management, processing, and storage of data, ensuring that data integrity, accessibility, and privacy are maintained across all stages of its lifecycle. 

Standalone DSPM takes a data-centric approach. It starts with the data, using contextual information such as data location, sensitivity, and business use cases to better control and secure it. These solutions offer preventative measures, such as discovering shadow data, preventing data sprawl, and reducing the data attack surface.

Data detection and response (DDR), often offered within a DSPM platform, provides reactive measures, enabling organizations to monitor their sensitive assets and detect and prevent data exfiltration. Because standalone DSPM solutions are data-centric, many are designed to follow data across a hybrid ecosystem, including public cloud, private cloud, and on-premises environments. This is ideal for the complex environments that many organizations maintain today.

What is an Infrastructure-Centric Approach?

An infrastructure-centric solution is focused on optimizing and protecting the underlying hardware, networks, and systems that support applications and services, ensuring performance, scalability, and reliability at the infrastructure level.

Both CNAPP and CSPM use infrastructure-centric approaches. Their capabilities focus on identifying vulnerabilities and misconfigurations in cloud infrastructure, as well as some basic compliance violations. CNAPP and CSPM can also identify attack paths and use several factors to prioritize which ones your team should remediate first. While both solutions can enforce policies, they can only offer security guardrails that protect static infrastructure. In addition, most CNAPP and CSPM solutions only work with public cloud environments, meaning they cannot secure private cloud or on-premises environments.

How Does a DSPM Add-On Module for CNAPP/CSPM Work?

Typically, when you add a DSPM module to CNAPP/CSPM, it can only work within the parameters set by its infrastructure-centric base solution. In other words, a DSPM add-on to a CNAPP/CSPM solution will also be infrastructure-centric. It’s like adding chocolate chips to vanilla ice cream; while they will change the flavor a bit, they can’t transform the constitution of your dessert into chocolate ice cream. 

A DSPM module in a CNAPP or CSPM solution generally has one purpose: helping your team better triage infrastructure security issues. Its sole functionality is to look at the attack paths that threaten your public cloud infrastructure, then flag which of these would most likely lead to sensitive data being breached. 

However, this functionality comes with a few caveats. While CSPM and CNAPP have some data discovery capabilities, they use very basic classification functions, such as pattern-matching techniques. This approach lacks context and granularity and requires validation by your security team. 

In addition, the DSPM add-on can only perform this data discovery within infrastructure already being monitored by the CNAPP/CSPM solution. So, it can only discover sensitive data within known public cloud environments. It may miss shadow data that has been copied to local stores or personal machines, leaving risky exposure gaps.

Why Infrastructure-Centric Solutions Aren’t Enough

So, what happens when you only use infrastructure-centric solutions in a modern cloud ecosystem? While these solutions offer powerful functionality for defending your public cloud perimeter and minimizing misconfigurations, they miss essential pieces of your data estate. Here are a few types of sensitive assets that often slip through the cracks of an infrastructure-centric approach: 

In addition, DSPM modules within CNAPP/CSPM platforms lack the context to properly classify sensitive data beyond easily identifiable examples, such as social security or credit card numbers. But, the data stores at today’s businesses often contain more nuanced personal or product/service-specific identifiers that could pose a risk if exposed. Examples include a serial number for a product that a specific individual owns or a medical ID number as part of an EHR. Some sensitive assets might even be made up of “toxic combinations,” in which the sensitivity of seemingly innocuous data classes increases when combined with specific identifiers. For example, a random 9-digit number alongside a headshot photo and expiration date is likely a sensitive passport number.

Ultimately, DSPM built into a CSPM or CNAPP solution only sees an incomplete picture of risk. This can leave any number of sensitive assets unknown and unprotected in your cloud and on-prem environments.

Dedicated DSPM Completes the Data Security Picture

A dedicated, best-of-breed DSPM solution like Sentra, on the other hand, offers rich, contextual information about all of your sensitive data — no matter where it resides, how your business uses it, or how nuanced it is. 

Rather than just defending the perimeters of known public cloud infrastructure, Sentra finds and follows your sensitive data wherever it goes. Here are a few of Sentra’s unique capabilities that complete your picture of data security:

  • Comprehensive, security-focused data catalog of all sensitive data assets across the entire data estate (IaaS, PaaS, SaaS, and On-Premises)
  • Ability to detect unmanaged, mislocated, or abandoned data, enabling your team to reduce your data attack surface, control data sprawl, and remediate security/privacy policy violations
  • Movement detection to surface out-of-policy data transformations that violate residency and security policies or that inadvertently create exposures
  • Nuanced discovery and classification, such as row/column/table analysis capabilities that can uncover uncommon personal identifiers, toxic combinations, etc.
  • Rich context for understanding the business purpose of data to better discern its level of sensitivity
  • Lower false positive rates due to deeper analysis of the context surrounding each sensitive data store and asset
  • Automation for remediating a variety of data posture, compliance, and security issues

All of this complex analysis requires a holistic, data-centric view of your data estate — something that only a standalone DSPM solution can offer. And when deployed together with a CNAPP or CSPM solution, a standalone DSPM platform can bring unmatched depth and context to your cloud data security program. It also provides unparalleled insight to facilitate prioritization of issue resolution.

To learn more about Sentra’s approach to data security posture management, read about how we use LLMs to classify structured and unstructured sensitive data at scale.

Read More
Yoav Regev
Yoav Regev
August 28, 2024
3
Min Read
Data Security

Sentra’s 3-Year Journey: From DSPM to Data Security Platform

Sentra’s 3-Year Journey: From DSPM to Data Security Platform

If you had searched for "DSPM" on Google three years ago, you likely would have only found information related to a dspm manufacturing website… But in just a few short years, the concept of Data Security Posture Management (DSPM) has evolved from an idea into a critical component of modern cybersecurity for enterprises.

Let’s rewind to the summer of 2021. Back then, when we were developing what would become Sentra and our DSPM solution, the term didn’t even exist. All that existed was the problem - data was being created, moved and duplicated in the cloud, and its security posture wasn’t keeping pace. Organizations didn’t know where all of their data was, and even if they could find it, its level of protection was inadequate for its level of sensitivity.

After extensive discussions with CISOs and security experts, we realized a critical gap between data security and the modern environments (further exacerbated by the fast pace of AI). Addressing this gap wasn’t just important—it was essential. Through these conversations, we identified the need for a new approach, leading to the creation of the DSPM concept, which didn't exist before. 

It was thrilling to hear my Co-Founder and VP Product, Yair Cohen, declare for the first time, “the world’s first DSPM is coming in 2021.” We embraced the term "Data Security Posture Management," now widely known as "DSPM."

Why DSPM Has Become an Essential Tool

Today, DSPM has become mainstream, helping organizations safeguard their most valuable asset: their data.

"Three years ago, when we founded Sentra, we dreamed of creating a new category called DSPM. It was a huge bet to pursue new budgets, but we believed that data security would be the next big thing due to the shift to the cloud. We could never have imagined that it would become the world’s hottest security category and that the potential would be so significant."

-Ron Reiter, Co-Founder and CTO, Sentra

This summer, Gartner has released its 2024 Hype Cycle for Data Security, and DSPM is in the spotlight for good reason. Gartner describes DSPM as having "transformative" potential, particularly for addressing long-standing data security challenges. 

As companies rapidly move to the cloud, DSPM solutions are gaining traction by filling critical visibility gaps. The best DSPM solutions offer coverage across multi-cloud and on-premises environments, creating a unified approach to data security.

DSPM plays a pivotal role in the modern cybersecurity landscape by providing organizations with real-time visibility into their data security posture. It helps identify, prioritize and mitigate risks across the entire data estate. By continuously monitoring data movement and access patterns, DSPM ensures that any policy violations or deviations from normal behavior are quickly flagged and addressed, preventing potential breaches before they can cause damage.

DSPM is also critical in maintaining compliance with data protection regulations. As organizations handle increasingly complex data environments, meeting regulatory requirements becomes more challenging. DSPM simplifies this process by automating compliance checks and providing clear insights into where sensitive data resides, how it’s being used, and who has access to it. This not only helps organizations avoid hefty fines but also builds trust with customers and stakeholders by demonstrating a commitment to data security and privacy.

In a world where data privacy and security threats rank among the biggest challenges facing society, DSPM provides a crucial layer of protection. Businesses, individuals, and governments are all at risk, with sensitive information constantly under threat. 

That’s why we are committed to developing our data security platform, which ensures your data remains secure and intact, no matter where it travels.

From DSPM to Data Security Platform in the AI Age

We began with a clear understanding of the critical need for Data Security Posture Management (DSPM) to address data proliferation risks in the evolving cloud landscape. As a leading data security platform, Sentra has expanded its capabilities based on our customers’ needs to include Data Access Governance (DAG), Data Detection and Response (DDR), and other essential tools to better manage data access, detect emerging threats, and assist organizations in their journey to implement Data Loss Prevention (DLP). We now do this across all environments (IaaS, PaaS, SaaS, and On-Premises).

We continue to evolve. In a world rapidly changing with advancements in AI, our platform offers the most comprehensive and effective data security solutions to keep pace with the demands of the AI age. As AI reshapes the digital landscape, it also creates new vulnerabilities, such as the risk of data exposure through AI training processes. Our platform addresses these AI-specific challenges, while continuing to tackle the persistent security issues from the cloud era, providing an integrated solution that ensures data security remains resilient and adaptive.

DSPMs facilitate swift AI development and smooth business operations by automatically securing LLM training data. Integrations with platforms like AWS SageMaker and GCP Vertex AI, combined with features such as DAG and DDR, ensure robust data security and privacy. This approach both supports responsible AI applications and also reduces risks such as breaches and bias.

So, Sentra is no longer only a DSPM solution, it’s a data security platform. Today, we provide holistic solutions that allow you to locate any piece of data and access all the information you need. Our mission is to continuously build and enhance the best data security platform, empowering organizations to move faster and succeed in today’s digital world. 

Success Driven by Our Amazing People

We’re proud that Sentra has emerged as a leader in the data security industry, making a significant impact on how organizations protect their data. 

Our success is driven by our incredible team, their hard work, dedication, and energy are the foundation of everything we do. From day one, our people have always been our top priority. It's inspiring to see our team work tirelessly to transform the world of data security and build the best solution out there. This team of champions never stops innovating, inspiring, and striving to be the best version of themselves every day.

Their passion is evident in their work, as shown in recent projects that they initiated, from the new video series, “Answering the Most Searched DSPM Questions”, to a behind the scenes walkthrough of our data security platform, and more.

We’re excited to continue to push the boundaries of what’s possible in data security.

A heartfelt thank you to our incredible team, loyal customers, supportive investors, and dedicated partners. We’re excited to keep driving innovation in data security and to continue our mission of making the digital world a safer place for everyone.

Read More
Daniel Suissa
Daniel Suissa
August 26, 2024
3
Min Read
Data Security

Overcoming Gartner’s Obstacles for DSPM Mass Adoption

Overcoming Gartner’s Obstacles for DSPM Mass Adoption

Gartner recently released its much-anticipated 2024 Hype Cycle for Data Security, and the spotlight is shining bright on Data Security Posture Management (DSPM). Described as having a "transformative" potential, DSPM is lauded for its ability to address long-standing data security challenges. 

DSPM solutions are gaining traction to fill visibility gaps as companies rush to the cloud.  Best of breed solutions provide coverage across multi-clouds and on-premises, providing a holistic approach that can become the authoritative inventory of data for an organization - and a useful up-to-date source of contextual detail to inform other security stack tools such as DLPs, CSPMs/CNAPPS, data catalogs, and more, enabling these to work more effectively. Learn more about this in our latest blog, Data: The Unifying Force Behind Disparate GRC Functions.

However, as with any emerging technology, Gartner also highlighted several obstacles that could hinder its widespread adoption. In this blog, we’ll dive into these obstacles, separating the legitimate concerns from those that shouldn't deter any organization from embracing DSPM—especially when using a comprehensive solution like Sentra.

Obstacle 1: Scanning the Entire Infrastructure for Data Can Take Days to Complete

This concern holds some truth, particularly for organizations managing petabytes of data. Full infrastructure scans can indeed take time. However, this doesn’t mean you're left twiddling your thumbs waiting for results. With Sentra, insights start flowing while the scan is still in progress. Our platform is designed to alert you to data vulnerabilities as they’re detected, ensuring you're never in the dark for long. So, while the scan might take days to finish, actionable insights are available much sooner. And scans for changes occur continuously so you’re always up to date.

Obstacle 2: Limited Integration with Security Controls for Remediation

Gartner pointed out that DSPM tools often integrate with a limited set of security controls, potentially complicating remediation efforts. While it’s true that each security solution prioritizes certain integrations, this is not a challenge unique to DSPM. Sentra, for instance, offers dozens of built-in integrations with popular ticketing systems and data remediation tools. Moreover, Sentra enables automated actions like auto-masking and revoking unauthorized access via platforms like Okta, seamlessly fitting into your existing workflow processes and enhancing your cloud security posture.

Obstacle 3: DSPM as a Function within Broader Data Security Suites

Another obstacle Gartner identified is that DSPM is sometimes offered merely as a function within a broader suite of data security offerings, which may not integrate well with other vendor products. This is a valid concern. Many cloud security platforms are introducing DSPM modules, but these often lack the discovery breadth and classification granularity needed for robust and accurate data security.

Sentra takes a different approach by going beyond surface-level vulnerabilities. Our platform uses advanced automatic grouping to create "Data Assets"—groups of files with similar structures, security postures, and business functions. This allows Sentra to reduce petabytes of cloud data into manageable data assets, fully scanning all data types daily without relying on random sampling. This level of detail and continuous monitoring is something many other solutions simply cannot match.

Obstacle 4: Inconsistent Product Capabilities Across Environments

Gartner also highlighted the varying capabilities of DSPM solutions, especially when it comes to mapping user access privileges and tracking data across different environments—on-premises, cloud services, and endpoints. While it’s true that DSPM solutions can differ in their abilities, the key is to choose a platform designed for multi-cloud and hybrid environments. Sentra is built precisely for this purpose, offering robust capabilities to identify and protect data across diverse environments (IaaS, PaaS, SaaS, and On-premises), ensuring consistent security and risk management no matter where your data resides.

Conclusion

While Gartner's 2024 Hype Cycle for Data Security outlines several obstacles to DSPM adoption, many of these challenges are either surmountable or less significant than they might first appear. With the right DSPM solution, organizations can effectively overcome these obstacles and harness the full transformative power of DSPM.

Curious about how Sentra can elevate your data security? 

Request a demo here.

Read More
decorative ball