All Resources
In this article:
minus iconplus icon
Share the Blog

Key Practices for Responding to Compliance Framework Updates

June 10, 2024
3
Min Read
Compliance

Most privacy, IT, and security teams know the pain of keeping up with ever-changing data compliance regulations. Because data security and privacy-related regulations change rapidly over time, it can often feel like a game of “whack a mole” for organizations to keep up. Plus, in order to adhere to compliance regulations, organizations must know which data is sensitive and where it resides. This can be difficult, as data in the typical enterprise is spread across multiple cloud environments, on premises stores, SaaS applications, and more. Not to mention that this data is constantly changing and moving.

While meeting a long list of constantly evolving data compliance regulations can seem daunting, there are effective ways to set a foundation for success. By starting with data security and hygiene best practices, your business can better meet existing compliance requirements and prepare for any future changes.

Recent Updates to Common Data Compliance Frameworks 

The average organization comes into contact with several voluntary and mandatory compliance frameworks related to security and privacy. Here’s an overview of the most common ones and how they have changed in the past few years:

Payment Card Industry Data Security Standard (PCI DSS)

What it is: PCI DSS is a set of over 500 requirements for strengthening security controls around payment cardholder data. 

Recent changes to this framework: In March 2022, the PCI Security Standards Council announced PCI DSS version 4.0. It officially went into effect in Q1 2024. This newest version has notably stricter standards for defining which accounts can access environments containing cardholder data and authenticating these users with multi-factor authentication and stronger passwords. This update means organizations must know where their sensitive data resides and who can access it.  

U.S. Securities and Exchange Commission (SEC) 4-Day Disclosure Requirement

What it is:  The SEC’s 4-day disclosure requirement is a rule that requires more established SEC registrants to disclose a known cybersecurity incident within four business days of its discovery.

Recent changes to this framework: The SEC released this disclosure rule in December 2023. Several Fortune 500 organizations had to disclose cybersecurity incidents, including a description of the nature, scope, and timing of the incident. Additionally, the SEC requires that the affected organization release which assets were impacted by the incident. This new requirement significantly increases the implications of a cyber event, as organizations risk more reputational damage and customer churn when an incident happens.

In addition, the SEC will require smaller reporting companies to comply with these breach disclosure rules in June 2024. In other words, these smaller companies will need to adhere to the same breach disclosure protocols as their larger counterparts.

Health Insurance Portability and Accountability Act (HIPAA)

What it is: HIPPA safeguards that protect patient information through stringent disclosure and privacy standards.

Recent changes to this framework: Updated HIPAA guidelines have been released recently, including voluntary cybersecurity performance goals created by the U.S. Department of Health and Human Services (HHS). These recommendations focus on data security best practices such as strengthening access controls, implementing incident planning and preparedness, using strong encryption, conducting asset inventory, and more. Meeting these recommendations strengthens an organization’s ability to adhere to HIPAA, specifically protecting electronic protected health information (ePHI).

General Data Protection Regulation (GDPR) and EU-US Data Privacy Framework

What it is: GDPR is a robust data privacy framework in the European Union. The EU-US Data Privacy Framework (DPF) adds a mechanism that enables participating organizations to meet the EU requirements for transferring personal data to third countries.

Recent changes to this framework: The GDPR continues to evolve as new data privacy challenges arise. Recent changes include the EU-U.S. Data Privacy framework, enacted in July 2023. This new framework requires that participating organizations significantly limit how they use personal data and inform individuals about their data processing procedures. These new requirements mean organizations must understand where and how they use EU user data.

National Institute of Standards and Technology (NIST) Cybersecurity Framework

What it is:  NIST is a voluntary guideline that provides recommendations to organizations for managing cybersecurity risk. However, companies that do business with or a part of the U.S. government, including agencies and contractors, are required to comply with NIST.

Recent changes to this framework: NIST recently released its 2.0 version. Changes include a new core function, “govern,” which brings in more leadership oversight. It also highlights supply chain security and executing more impactful cyber incident responses. Teams must focus on gaining complete visibility into their data so leaders can fully understand and manage risk.    

ISO/IEC 27001:2022

What it is: ISO/IEC 27001 is a certification that requires businesses to achieve a level of information security standards. 

Recent changes to this framework: ISO 27001 was revised in 2022. While this addendum consolidated many of the controls listed in the previous version, it also added 11 brand-new ones, such as data leakage protection, monitoring activities, data masking, and configuration management. Again, these additions highlight the importance of understanding where and how data gets used so businesses can better protect it.

California Consumer Privacy Act (CCPA)

What it is: CCPA is a set of mandatory regulations for protecting the data privacy of California residents.

Recent changes to this framework: The CCPA was amended in 2023 with the California Privacy Rights Act (CPRA). This new edition includes new data rights, such as consumers’ rights to correct inaccurate personal information and limit the use of their personal information. As a result, businesses must have a stronger grasp on how their CA users’ data is stored and used across the organization.

2024 FTC Mandates

What it is: The Federal Trade Commission (FTC)’s new mandates require some businesses to disclose data breaches to the FTC as soon as possible — no later than 30 days after the breach is discovered. 

Recent changes to this framework: The first of these new data breach reporting rules is the Standards for Safeguarding Customer Information (Safeguards Rule) which took effect in May 2024. The Safeguards Rule puts disclosure requirements on non-banking financial institutions and financial institutions that aren’t required to register with the SEC (e.g, mortgage brokers, payday lenders, and vehicle dealers). 

Key Data Practices for Meeting Compliance

These frameworks are just a portion of the ever-changing compliance and regulatory requirements that businesses must meet today. Ultimately, it all goes back to strong data security and hygiene: knowing where your data resides, who has access to it, and which controls are protecting it. 

To gain visibility into all of these areas, businesses must operationalize the following actions throughout their entire data estate:

  • Discover data in both known and unknown (shadow) data stores.
  • Accurately classify and organize discovered data so they can adequately protect their most sensitive assets.
  • Monitor and track access keys and user identities to enforce least privilege access and to limit third-party vendor access to sensitive data.
  • Detect and alert on risky data movement and suspect activity to gain early warning into potential breaches.

Sentra enables organizations to meet data compliance requirements with data security posture management (DSPM) and data access governance (DAG) that travel with your data. We help organizations gain a clear view of all sensitive data, identify compliance gaps for fast resolution, and easily provide evidence of regulatory controls in framework-specific reports. 

Find out how Sentra can help your business achieve data and privacy compliance requirements.

If you want to learn more, request a demo with our data security experts.

Meni is an experienced product manager and the former founder of Pixibots (A mobile applications studio). In the past 15 years, he gained expertise in various industries such as: e-commerce, cloud management, dev-tools, mobile games, and more. He is passionate about delivering high quality technical products, that are intuitive and easy to use.

Subscribe

Latest Blog Posts

Meni Besso
Meni Besso
February 19, 2026
3
Min Read

Automating Records of Processing Activities (ROPA) with Real Data Visibility

Automating Records of Processing Activities (ROPA) with Real Data Visibility

Enterprises managing sprawling multi-cloud environments struggle to keep ROPA (Records of Processing Activities) reporting accurate and up to date for GDPR compliance. As manual, spreadsheet-based workflows hit their limits, automation has become essential - not just to save time, but to build confidence in what data is actually being processed across the organization.

Recently, during a strategy session, a leading GDPR-regulated customer shared how they are using Sentra to move beyond manual ROPA processes. By relying on Sentra’s automated data discovery, AI-driven classification, and environment-aware reporting, the organization has operationalized a high-confidence ROPA across ~100 cloud accounts. Their experience highlights a critical shift: ROPA as a trusted source of truth rather than a checkbox exercise.

Why ROPA Often Comes Up Short in Practice

For many organizations, maintaining a ROPA is a regulatory requirement, but not a reliable one.

As the customer explained:

“What I’ve often seen is the ROPA or the records of processing activity being something that is a very checkbox thing to do. And that’s because it’s really hard to understand what data you actually have unless you literally go and interrogate every database.”

Without direct visibility into cloud data stores, ROPA documentation often relies on assumptions, interviews, and outdated spreadsheets. This approach doesn’t scale and creates risk during audits, due diligence, and regulatory inquiries, especially for companies operating across multiple clouds or growing through acquisition.

From Guesswork to a High-Confidence ROPA

The same customer described how Sentra fundamentally changed their approach:

“What Sentra allowed us to do is really have what I’ll describe as a high confidence ROPA. Our ROPA wasn’t guesswork, it was based on actual information that Sentra had gone out, touched our databases, looked inside them, identified the specific types of data records, and then gave us that inventory of what we had.”

By directly scanning databases and cloud data stores, Sentra replaces assumptions with facts. ROPA reports are generated from live discovery results, giving compliance teams confidence that they can accurately attest to:

  • What personal data they hold
  • Where it resides
  • How it is processed
  • And how it is governed

This transforms ROPA from a static document into a defensible, audit-ready asset.

The Need for Automated ROPA Reporting at Scale

Manual ROPA reporting becomes unmanageable as cloud environments expand. Organizations with dozens or hundreds of cloud accounts quickly face gaps, inconsistencies, and outdated records. Industry research shows that privacy automation can reduce manual ROPA effort by up to 80% and overall compliance workload by 60%. But effective automation requires focus. Reporting must concentrate on production environments, where real customer data lives, rather than drowning teams in noise from test or development systems.

As a privacy champion on this project, explains:

“What I’m interested in is building a data inventory that gives me insight from a privacy point of view on what kind of customer data we are holding.”

This shift toward privacy-focused inventories ensures ROPA reporting stays meaningful, actionable, and aligned with regulatory intent.

How Sentra Enables Template-Driven, Environment-Aware ROPA Reporting

Sentra’s reporting framework allows organizations to create custom ROPA templates tailored to their regulatory, operational, and business needs. These templates automatically pull from continuously updated discovery and classification results, ensuring reports stay accurate as environments evolve.

A critical component of this approach is environment tagging. By clearly distinguishing production systems from non-production environments, Sentra ensures ROPA reports reflect only systems that actually process personal data. This reduces reporting noise, improves audit clarity, and aligns with modern GDPR automation best practices.

The result is ROPA reporting that is both scalable and precise - without requiring manual filtering or spreadsheet maintenance.

Solving the Data Classification Problem with Context-Aware AI

Accurate ROPA automation depends on intelligent data classification. Many tools rely on basic pattern matching, which often leads to false positives, such as mistaking airline or airport codes for regulated personal data in HR or internal systems.

Sentra addresses this challenge with AI-based, context-aware classification that understands how data is structured, where it appears, and how it is used. Rather than flagging data solely based on patterns, Sentra analyzes context to reliably distinguish between regulated personal data and non-regulated business data.

This approach dramatically reduces false positives and gives privacy teams confidence that ROPA reports reflect real regulatory exposure - without manual cleanup, lookup tables, or ongoing tuning.

What Sets Sentra Apart for ROPA Automation

While many platforms claim to support ROPA automation, few can deliver accurate, production-ready reporting across complex cloud environments. Sentra stands out through:

  • Agentless data discovery
  • Native multi-cloud support (AWS, Azure, GCP, and hybrid)
  • Context-aware AI classification
  • Data-centric inventory of all customer regulated data
  • Flexible, customizable ROPA reporting templates
  • Strong handling of inconsistent metadata and environment tagging

As the customer summarized:

“It’s no longer a checkbox exercise. It’s a very high confidence attestation of what we definitely have. That visibility allowed us to comply with GDPR in a much more comprehensive way.”

Conclusion

ROPA automation is not just about efficiency, it’s about trust. By grounding ROPA reporting in real data discovery, environment awareness, and AI-driven classification, Sentra enables organizations to replace guesswork with confidence.

The result is a scalable, defensible ROPA that reduces manual effort, lowers compliance risk, and supports long-term privacy maturity.

Interested in seeing high-confidence ROPA automation in action? Book a demo with Sentra to learn how you can turn ROPA into a living source of truth for GDPR compliance.

<blogcta-big>

Read More
David Stuart
David Stuart
February 18, 2026
3
Min Read

Entity-Level vs. File-Level Data Classification: Effective DSPM Needs Both

Entity-Level vs. File-Level Data Classification: Effective DSPM Needs Both

Most security teams think of data classification as a single capability. A tool scans data, finds sensitive information, and labels it. Problem solved. In reality, modern data environments have made classification far more complex.

As organizations scale across cloud platforms, SaaS apps, data lakes, collaboration tools, and AI systems, security teams must answer two fundamentally different questions:

  1. What sensitive data exists inside this asset?
  2. What is this asset actually about?

These questions represent two distinct approaches:

  • Entity-level data classification
  • File-level (asset-level) data classification

A well-functioning Data Security Posture Management (DSPM) requires both.

What Is Entity-Level Data Classification?

Entity-level classification identifies specific sensitive data elements within structured and unstructured content. Instead of labeling an entire file as sensitive, it determines exactly which regulated entities are present and where they appear. These entities can include personal identifiers, financial account numbers, healthcare codes, credentials, digital identifiers, and other protected data types.

This approach provides precision at the field or token level. By detecting and validating individual data elements, security teams gain measurable visibility into exposure - including how many sensitive values exist, where they are located, and how they are used. That visibility enables targeted controls such as masking, redaction, tokenization, and DLP enforcement. In cloud and AI-driven environments, where risk is often tied to specific identifiers rather than document categories, this level of granularity is essential.

Examples of Entity-Level Detection

Entity-level classifiers detect atomic data elements such as:

  • Personal identifiers (names, emails, Social Security numbers)
  • Financial data (credit card numbers, IBANs, bank accounts)
  • Healthcare markers (diagnoses, ICD codes, treatment terms)
  • Credentials (API keys, tokens, private keys, passwords)
  • Digital identifiers (IP addresses, device IDs, user IDs)

This level of granularity enables precise policy enforcement and measurable risk assessment.

How Entity-Level Classification Works

High-quality entity detection is not just regex scanning. Effective systems combine multiple validation layers to reduce false positives and increase accuracy:

  • Deterministic patterns (regular expressions, format checks)
  • Checksum validation (e.g., Luhn algorithm for credit cards)
  • Keyword and proximity analysis
  • Dictionaries and structured reference tables
  • Natural Language Processing (NLP) with Named Entity Recognition
  • Machine learning models to suppress noise

This multi-signal approach ensures detection works reliably across messy, real-world data.

When Entity-Level Classification Is Essential

Entity-level classification is essential when security controls depend on the presence of specific data elements rather than broad document categories. Many policies are triggered only when certain identifiers appear together ,such as a Social Security number paired with a name - or when regulated financial or healthcare data exceeds defined thresholds. In these cases, security teams must accurately locate, validate, and quantify sensitive fields to enforce controls effectively.

This precision is also required for operational actions such as masking, redaction, tokenization, and DLP enforcement, where controls must be applied to exact values instead of entire files. In structured data environments like databases and warehouses, entity-level classification enables column- and table-level visibility, forming the basis for exposure measurement, risk scoring, and access governance decisions.

However, entity-level detection does not explain the broader business context of the data. A credit card number may appear in an invoice, a support ticket, a legal filing, or a breach report. While the identifier is the same, the surrounding context changes the associated risk and the appropriate response.

This is where file-level classification becomes necessary.

What Is File-Level (Asset-Level) Data Classification?

File-level classification determines the semantic meaning and business context of an entire data asset.

Instead of asking what sensitive values exist, it asks:

What kind of document or dataset is this? What is its business purpose?

Examples of File-Level Classification

File-level classifiers identify attributes such as:

  • Business domain (HR, Legal, Finance, Healthcare, IT)
  • Document type (NDA, invoice, payroll record, resume, contract)
  • Business purpose (compliance evidence, client matter, incident report)

This context is essential for appropriate governance, access control, and AI safety.

How File-Level Classification Works

File-level classification relies on semantic understanding, typically powered by:

  • Small and Large Language Models (SLMs/LLMs)
  • Vector embeddings for topic similarity
  • Confidence scoring and ensemble validation
  • Trainable models for organization-specific document types

This allows systems to classify documents even when sensitive entities are sparse, masked, or absent.

For example, an employment contract may contain limited PII but still require strict access controls because of its business context.

When File-Level Classification Is Essential

File-level classification becomes essential when security decisions depend on business context rather than just the presence of sensitive strings. For example, enforcing domain-based access controls requires knowing whether a document belongs to HR, Legal, or Finance - not just whether it contains an email address or account number. The same applies to implementing least-privilege access models, where entire categories of documents may need tighter controls based on their purpose.

File-level classification also plays a critical role in retention policies and audit workflows, where governance rules are applied to document types such as contracts, payroll records, or compliance evidence. And as organizations adopt generative AI tools, semantic understanding becomes even more important for implementing AI governance guardrails, ensuring copilots don’t ingest sensitive HR files or privileged legal documents.

That said, file-level classification alone is not sufficient. While it can determine what a document is about, it does not precisely locate or quantify sensitive data within it. A document labeled “Finance” may or may not contain exposed credentials or an excessive concentration of regulated identifiers, risks that only entity-level detection can accurately measure.

Entity-Level vs. File-Level Classification: Key Differences

Entity-Level Classification File-Level Classification
Detects specific sensitive values Identifies document meaning and context
Enables masking, redaction, and DLP Enables context-aware governance
Works well for structured data Strong for unstructured documents
Provides precise risk signals Provides business intent and domain context
Lacks semantic understanding of purpose Lacks granular entity visibility

Each approach solves a different security problem. Relying on only one creates blind spots or false positives. Together, they form a powerful combination.

Why Using Only One Approach Creates Security Gaps

Entity-Only Approaches

Tools focused exclusively on entity detection can:

  • Flag isolated sensitive values without context
  • Generate high alert volumes
  • Miss business intent
  • Treat all instances of the same entity as equal risk

A payroll file and a legal complaint may both contain Social Security numbers — but they represent different governance needs.

File-Only Approaches

Tools focused only on semantic labeling can:

  • Identify that a document belongs to “Finance” or “HR”
  • Apply domain-based policies
  • Enable context-aware access

But they may miss:

  • Embedded credentials
  • Excessive concentrations of regulated identifiers
  • Toxic combinations of data types (e.g., PII + healthcare terms)

Without entity-level precision, risk scoring becomes guesswork.

How Effective DSPM Combines Both Layers

The real power of modern Data Security Posture Management (DSPM) emerges when entity-level and file-level classification operate together rather than in isolation. Each layer strengthens the other. Context can reinforce entity validation: for example, a dense concentration of financial identifiers helps confirm that a document truly belongs in the Finance domain or represents an invoice. At the same time, entity signals can refine context. If a file is semantically classified as an invoice, the system can apply tighter validation logic to account numbers, totals, and other financial fields, improving accuracy and reducing noise.

This combination also enables more intelligent policy enforcement. Instead of relying on brittle, one-dimensional rules, security teams can detect high-risk combinations of data. Personal identifiers appearing within a healthcare context may elevate regulatory exposure. Credentials embedded inside operational documents may signal immediate security risk. An unusually high concentration of identifiers in an externally shared HR file may indicate overexposure. These are nuanced risk patterns that neither entity-level nor file-level classification can reliably identify alone.

When both layers inform policy decisions, organizations can move toward true risk-based governance. Sensitivity is no longer determined solely by what specific data elements exist, nor solely by what category a document falls into, but by the intersection of the two. Risk is derived from both what is inside the data and what the data represents.

This dual-layer approach reduces false positives, increases analyst trust, and enables more precise controls across cloud and SaaS environments. It also becomes essential for AI governance, where understanding both sensitive content and business context determines whether data is safe to expose to copilots or generative AI systems.

What to Look for in a DSPM Classification Engine

Not all DSPM platforms treat classification equally.

When evaluating solutions, security leaders should ask:

  • Does the platform classify and validate sensitive entities beyond basic regex?
  • Can it semantically identify document type and business domain?
  • Are entity-level and file-level signals tightly integrated?
  • Can policies reason across both layers simultaneously?
  • Does risk scoring incorporate both precision and context?

The goal is not simply to “classify data,” but to generate actionable, risk-aligned data  intelligence.

The Bottom Line

Modern data estates are too complex for single-layer classification models. Entity-level classification provides precision, identifying exactly what sensitive data exists and where.

File-level classification provides context - understanding what the data is and why it exists.

Together, they enable accurate risk detection, effective policy enforcement, least-privilege access, and AI-safe governance. In today’s cloud-first and AI-driven environments, data security posture management must go beyond isolated detections or broad labels. It must understand both the contents of data and its meaning - at the same time.

That’s the new standard for data classification.

Read More
Ariel Rimon
Ariel Rimon
Daniel Suissa
Daniel Suissa
February 16, 2026
4
Min Read

How Modern Data Security Discovers Sensitive Data at Cloud Scale

How Modern Data Security Discovers Sensitive Data at Cloud Scale

Modern cloud environments contain vast amounts of data stored in object storage services such as Amazon S3, Google Cloud Storage, and Azure Blob Storage. In large organizations, a single data store can contain billions (or even tens of billions) of objects. In this reality, traditional approaches that rely on scanning every file to detect sensitive data quickly become impractical.

Full object-level inspection is expensive, slow, and difficult to sustain over time. It increases cloud costs, extends onboarding timelines, and often fails to keep pace with continuously changing data. As a result, modern data security platforms must adopt more intelligent techniques to build accurate data inventories and sensitivity models without scanning every object.

Why Object-Level Scanning Fails at Scale

Object storage systems expose data as individual objects, but treating each object as an independent unit of analysis does not reflect how data is actually created, stored, or used.

In large environments, scanning every object introduces several challenges:

  • Cost amplification from repeated content inspection at massive scale
  • Long time to actionable insights during the first scan
  • Operational bottlenecks that prevent continuous scanning
  • Diminishing returns, as many objects contain redundant or structurally identical data

The goal of data discovery is not exhaustive inspection, but rather accurate understanding of where sensitive data exists and how it is organized.

The Dataset as the Correct Unit of Analysis

Although cloud storage presents data as individual objects, most data is logically organized into datasets. These datasets often follow consistent structural patterns such as:

  • Time-based partitions
  • Application or service-specific logs
  • Data lake tables and exports
  • Periodic reports or snapshots

For example, the following objects are separate files but collectively represent a single dataset:

logs/2026/01/01/app_events_001.json

logs/2026/01/02/app_events_002.json

logs/2026/01/03/app_events_003.json

While these objects differ by date, their structure, schema, and sensitivity characteristics are typically consistent. Treating them as a single dataset enables more accurate and scalable analysis.

Analyzing Storage Structure Without Reading Every File

Modern data discovery platforms begin by analyzing storage metadata and object structure, rather than file contents.

This includes examining:

  • Object paths and prefixes
  • Naming conventions and partition keys
  • Repeating directory patterns
  • Object counts and distribution

By identifying recurring patterns and natural boundaries in storage layouts, platforms can infer how objects relate to one another and where dataset boundaries exist. This analysis does not require reading object contents and can be performed efficiently at cloud scale.

Configurable by Design

Sampling can be disabled for specific data sources, and the dataset grouping algorithm can be adjusted by the user. This allows teams to tailor the discovery process to their environment and needs.


Automatic Grouping into Dataset-Level Assets

Using structural analysis, objects are automatically grouped into dataset-level assets. Clustering algorithms identify related objects based on path similarity, partitioning schemes, and organizational patterns. This process requires no manual configuration and adapts as new objects are added. Once grouped, these datasets become the primary unit for further analysis, replacing object-by-object inspection with a more meaningful abstraction.

Representative Sampling for Sensitivity Inference

After grouping, sensitivity analysis is performed using representative sampling. Instead of inspecting every object, the platform selects a small, statistically meaningful subset of files from each dataset.

Sampling strategies account for factors such as:

  • Partition structure
  • File size and format
  • Schema variation within the dataset

By analyzing these samples, the platform can accurately infer the presence of sensitive data across the entire dataset. This approach preserves accuracy while dramatically reducing the amount of data that must be scanned.

Handling Non-Standard Storage Layouts

In some environments, storage layouts may follow unconventional or highly customized naming schemes that automated grouping cannot fully interpret. In these cases, manual grouping provides additional precision. Security analysts can define logical dataset boundaries, often supported by LLM-assisted analysis to better understand complex or ambiguous structures. Once defined, the same sampling and inference mechanisms are applied, ensuring consistent sensitivity assessment even in edge cases.

Scalability, Cost, and Operational Impact

By combining structural analysis, grouping, and representative sampling, this approach enables:

  • Scalable data discovery across millions or billions of objects
  • Predictable and significantly reduced cloud scanning costs
  • Faster onboarding and continuous visibility as data changes
  • High confidence sensitivity models without exhaustive inspection

This model aligns with the realities of modern cloud environments, where data volume and velocity continue to increase.

From Discovery to Classification and Continuous Risk Management

Dataset-level asset discovery forms the foundation for scalable classification, access governance, and risk detection. Once assets are defined at the dataset level, classification becomes more accurate and easier to maintain over time. This enables downstream use cases such as identifying over-permissioned access, detecting risky data exposure, and managing AI-driven data access patterns.

Applying These Principles in Practice

Platforms like Sentra apply these principles to help organizations discover, classify, and govern sensitive data at cloud scale - without relying on full object-level scans. By focusing on dataset-level discovery and intelligent sampling, Sentra enables continuous visibility into sensitive data while keeping costs and operational overhead under control.

<blogcta-big>

Read More
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security. Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!

Before you go...

Get the Gartner Customers' Choice for DSPM Report

Read why 98% of users recommend Sentra.

White Gartner Peer Insights Customers' Choice 2025 badge with laurel leaves inside a speech bubble.