Sentra Expands Data Security Platform with On-Prem Scanners for Hybrid Environments
All Resources
In this article:
minus iconplus icon
Share the Blog

How to Meet the Security Challenges of Hybrid Data Environments

April 30, 2024
4
Min Read
Data Security

It’s an age-old question at this point: should we operate in the cloud or on premises? But for many of today’s businesses, it’s not an either-or question, as the answer is both.

Although cloud has been the ‘latest and greatest’ for the past decade, very few organizations rely on it completely, and that’s probably not going to change anytime soon. According to a survey conducted by Foundry in 2023, 70% of organizations have brought some cloud apps or services back to on premises after migration due to security concerns, budget/cost control, and performance/reliability issues. 

But at the same time, the cloud is still growing in importance within organizations. Gartner projects that public cloud spending will increase by 20.4% in just the next year. With all of this in mind, it’s safe to say that most businesses are leveraging a hybrid approach and will continue to do so for a long time. 

But where does this leave today’s data security professionals, who must simultaneously secure cloud and on prem operations? The key to building a robust data security approach and future-proofing your hybrid organization is to adopt cloud-native data security that serves both areas equally well and, importantly, can match the expected cloud growth demands of the future.

On Prem Data Security Considerations

Because on premises data stores are here to stay for most organizations, teams must consider how they will respond to the unique challenges of on prem data security. Let’s dive into two areas that are unique to on premises data stores and require specific security considerations:

Network-Attached Storage (NAS) and File Servers

File shares, such as SMB (CIFS), NFS and FTP, play an integral role in making on prem data accessible. However, the specific structure and data formats used within file servers can pose challenges for data security professionals, including:

  • Identifying where sensitive data is stored and preventing its sprawl to unknown locations.
  • Nested or inherited permissions structures that could lead to overly permissive access.
  • Ensuring security and compliance across massive amounts of data that change continuously.

On Prem Databases With Structured and Unstructured Data

The variety in on prem databases also brings security challenges. Different databases such as MSSQL, Oracle, PostgreSQL, MongoDB, and MySQL and others use different data structures. Security professionals often struggle to compile structured, unstructured, and semi-structured data from these different sources to monitor their data security posture continuously. ETL operations do the heavy lifting, but this can lead to further obfuscation of the underlying (and often sensitive!) data. Plus, access control is managed separately within each of these databases, making it hard to institute least privilege.

Businesses need to use data security solutions that can scan all of these distinct store and data types, centralize security administration for these disparate storage areas, and respond to security issues commonly appearing in hybrid environments, such as misconfigurations, weak security, data proliferation and compliance violations. Legacy premise or cloud-only solutions won’t cut it in these situations, as they aren’t adapted to work with these specific considerations. 

Cloud Data Security Considerations

In addition to all these on prem data and storage variations, most organizations also leverage multiple cloud environments. This reality makes managing a holistic view of data security even more complex. A single organization might use several different cloud service providers (AWS, Azure, Google Cloud Platform, etc.), along with a variety of data lakes and data warehouses (e.g., Snowflake). Each of these platforms has a unique architecture and must be managed separately, making it challenging to centralize data security efforts.

Here are a few aspects of cloud environments that data security professionals must consider:

Massive Data Attack Surface

Because it’s so easy to move, change, or modify data in the cloud, data proliferates at an unprecedented speed. This leads to a huge attack surface of unregulated and unmonitored data. Security professionals face a new challenge in the cloud: securing data regardless of where it resides. But this can prove to be difficult when security teams might not even know that a copied or modified version of sensitive data exists in the first place. This organizational data that exists outside the centralized and secured data management framework, known as shadow data, poses a considerable threat to organizations, as they can’t protect what they don’t know.

Business Agility

In addition, security teams must figure out how to secure cloud data without slowing down other teams’ innovation and agility in the cloud. In many cases, teams must copy cloud data to complete their daily tasks. For example, a developer might need to stage a copy of production data for test purposes, or a business intelligence analyst might need to mine a copy of production data for new revenue opportunities. They must learn how to enforce critical policies without gatekeeping sensitive data that teams need to access for the business to succeed. 

Variety in Data Store Types

Cloud infrastructure often includes a variety of data store types as well. This includes cloud computing infrastructure such as IaaS, PaaS, DBaaS, application development components such as repositories and live applications, and, in many cases, several different public cloud providers. Each of these data stores exists in a silo, making it challenging for data security professionals to gain a centralized view of the entire organization’s data security posture. 

Unifying Cloud and On Prem Hybrid Environments With Cloud-Native Data Security

Because of its massive scale, dynamic nature, and service-oriented architecture, cloud infrastructure is more complex to secure than on prem. Generally speaking, anyone with a username and password for a cloud instance can access most of the data inside it by default. In other words, you can’t just secure its boundaries as you would with on premises data. And because new cloud instances are so easy to spin up, there are no assurances that a new cloud asset, that may contain data copies, will have the same protections as the original.  

Because of this complexity, legacy tools originally created for on prem environments, such as traditional data loss prevention (DLP), just won’t cut it in cloud environments. Yet cloud-only security offerings, such as those from the cloud service providers themselves, exclude the unique aspects of on premises environments or may be myopic in what they support. Instead, organizations must consider solutions that address both on prem and multi-cloud environments simultaneously. The answer lies in cloud-native data security that supports both

Because it’s built for the complexity of the cloud but includes support for on prem infrastructure, a cloud-native data security platform can follow your data across your entire hybrid environment and compile complex security posture information into a single location. Sentra approaches this concept in a unique way, enabling teams to see data similarity and movement between on prem and cloud stores. By understanding data movement, organizations can minimize the risks associated with data sprawl, while simultaneously securely enabling the business.

With a unified platform, teams can see a complete picture of their data security posture without needing to jump back and forth between the contexts and differing interfaces of on premises and cloud tools. A centralized platform also enables teams to consistently define and enforce policies for all types of data across all types of environments. In addition, it makes it easier to generate audit-ready reports and feed data into remediation tools from a single integration point.


Sentra’s Cloud-Native Approach to Hybrid Environments

Sentra offers a cloud-native data security posture management (DSPM) solution for monitoring various data types across all environments — from premises to SaaS to public cloud.

This is a major development, as our solution uniquely enables security teams to…

  • Automatically discover all data without agents or connectors, including data within multiple cloud environments, NFS / SMB File Servers, and both SQL/NoSQL on premises databases.
  • Compile information inside a single data catalog that lists sensitive data and its security and compliance posture.
  • Receive alerts for misconfigurations, weak encryptions, compliance violations, and much more.
  • Identify duplicated data between environments, including on prem, cloud, and SaaS, enabling organizations to clean up unused data, control sprawl and reduce risks.
  • Track access to sensitive data stores from a single interface and ensure least privilege access.

Plus, when you use Sentra, your data never leaves your environment - it remains in place, secure and without disruption. We leverage native cloud serverless processing functions (ex. AWS Lambda) to scan your cloud data. For on premises, we scan all data within your secure networks and only send metadata to the Sentra cloud platform for further reporting and analysis.

Sentra also won’t interrupt your production flow of data, as it works asynchronously in both cloud and on premises environments (it scans on prem by creating temporary copies to scan in the customer cloud environment).

Dive deeper into how Sentra’s data security posture management (DSPM) helps hybrid organizations secure data everywhere. 

To learn more about DSPM, schedule a demo with one of our experts.

David Stuart is Senior Director of Product Marketing for Sentra, a leading cloud-native data security platform provider, where he is responsible for product and launch planning, content creation, and analyst relations. Dave is a 20+ year security industry veteran having held product and marketing management positions at industry luminary companies such as Symantec, Sourcefire, Cisco, Tenable, and ZeroFox. Dave holds a BSEE/CS from University of Illinois, and an MBA from Northwestern Kellogg Graduate School of Management.

Subscribe

Latest Blog Posts

Ward Balcerzak
Ward Balcerzak
November 12, 2025
4
Min Read
Data Security

Best DSPM Tools: Top 9 Vendors Compared

Best DSPM Tools: Top 9 Vendors Compared

Enhanced DSPM Adoption Is the Most Important Data Security Trend of 2026

Over the past few years, organizations have realized that traditional security tools can’t keep pace with how data moves and grows today. Exploding volumes of sensitive data now flourish across multi-cloud environments, SaaS platforms, and AI systems, often without full visibility by the teams responsible for securing it. Unstructured data presents the greatest risk - representing over 80% of corporate data.

That’s why Data Security Posture Management (DSPM) has become a critical part of the modern security stack. DSPM tools help organizations automatically discover, classify, monitor, and protect sensitive data - no matter where it lives or travels.

But in 2026, the data security game is changing. Many DSPMs can tell you what your data is,  but more is needed. Leading DSPM platforms are going beyond visibility. They’re delivering real-time AI-enhanced contextual business insights, automated remediation, and AI-aware accurate protection that scales with your dynamic data.

AI-enhanced DSPM Capabilities in 2026

Not all DSPM tools are built the same. The top platforms share a few key traits that define the next generation of data security posture management:

Capability Why It Matters
Continuous discovery and classification at scale Real-time visibility into all sensitive data across cloud, SaaS, and on-prem systems. Efficiency, at petabyte scale, to allow for scanning frequency commensurate with business risk.
Contextual risk analysis Understanding what data is sensitive, who can access it, and how it’s being used. Understanding the business context around data so that appropriate actions can be taken.
Automated remediation Native capabilities and Integration with systems that correct risky configurations or excessive access automatically.
Integration and scalability Seamless connections to CSPM, SIEM, IAM, ITSM, and SOAR tools to unify data risk management and streamline workflows.
AI and model governance Capabilities to secure data used in GenAI agents, copilot assistants, and pipelines.

Top DSPM Tools to Watch in 2026

Based on recent analyst coverage, market growth, and innovation across the industry, here are the top DSPM platforms to watch this year, each contributing to how data security is evolving.

1. Sentra

As a cloud-native DSPM platform, Sentra focuses on continuous data protection, not just visibility. It discovers and accurately classifies sensitive data in real time across all cloud environments, while automatically remediating risks through policy-driven automation.

What sets Sentra apart:

  • Continuous, automated discovery and classification across your entire data estate - cloud, SaaS, and on-premises.
  • Business Contextual insights that understand the purpose of data, accurately linking data, identity, and risk.
  • Automatic learning to discern customer unique data types and continuously improve labeling over time.
  • Petabyte scaling and low compute consumption for 10X cost efficiency.
  • Automated remediation workflows and integrations to fix issues instantly.
  • Built-in coverage for data flowing through AI and SaaS ecosystems.

Ideal for: Security teams looking for a cloud-native DSPM platform built for scalability in the AI era with automation at its core.

2. BigID

A pioneer in data discovery and classification, BigID bridges DSPM and privacy governance, making it a good choice for compliance-heavy sectors.


Ideal for: Organizations prioritizing data privacy, governance, and audit readiness.

3. Prisma Cloud (Palo Alto Networks)

Prisma’s DSPM offering integrates closely with CSPM and CNAPP components, giving security teams a single pane of glass for infrastructure and data risk.


Ideal for: Enterprises with hybrid or multi-cloud infrastructures already using Palo Alto tools.

4. Microsoft Purview / Defender DSPM

Microsoft continues to invest heavily in DSPM through Purview, offering rich integration with Microsoft 365 and Azure ecosystems. Note: Sentra integrates with Microsoft Purview Information Protection (MPIP) labeling and DLP policies.

Ideal for: Microsoft-centric organizations seeking native data visibility and compliance automation.

5. Securiti.ai

Positioned as a “Data Command Center,” Securiti unifies DSPM, privacy, and governance. Its strength lies in automation and compliance visibility and SaaS coverage.


Ideal for: Enterprises looking for an all-in-one governance and DSPM solution.

6. Cyera

Cyera has gained attention for serving the SMB segment with its DSPM approach. It uses LLMs for data context, supplementing other classification methods, and provides integrations to IAM and other workflow tools.


Ideal for: Small/medium growing companies that need basic DSPM functionality.

7. Wiz

Wiz continues to lead in cloud security, having added DSPM capabilities into its CNAPP platform. They’re known for deep multi-cloud visibility and infrastructure misconfiguration detection.

Ideal for: Enterprises running complex cloud environments looking for infrastructure vulnerability and misconfiguration management.

8. Varonis

Varonis remains a strong player for hybrid and on-prem data security, with deep expertise in permissions and access analytics and focus on SaaS/unstructured data.


Ideal for: Enterprises with legacy file systems or mixed cloud/on-prem architectures.

9. Netwrix

Netwrix’s platform incorporates DSPM-related features into its auditing and access control suite.

Ideal for: Mid-sized organizations seeking DSPM as part of a broader compliance solution.

Emerging DSPM Trends to Watch in 2026

  1. AI Data Security: As enterprises adopt GenAI, DSPM tools are evolving to secure data used in training and inference.

  2. Identity-Centric Risk: Understanding and controlling both human and machine identities is now central to data posture.

  3. Automation-Driven Security: Remediation workflows are becoming the differentiator between “good” and “great.”

Market Consolidation: Expect to see CNAPP, legacy security, and cloud vendors acquiring DSPM startups to strengthen their coverage.

How to Choose the Right DSPM Tool

When evaluating a DSPM solution, align your choice with your data landscape and goals:

  • Cloud-Native Company Choose tools designed for cloud-first environments (like Sentra, Securiti, Wiz).
  • Compliance Priority Platforms like Sentra, BigID or Securiti excel in privacy and governance.
  • Microsoft-Heavy Stack Purview and Sentra DSPM offer native integration.
  • Hybrid Environment Consider Varonis, Prisma Cloud, or Sentra for extended visibility.
  • Enterprise Scalability Evaluate deployment ease, petabyte scalability, cloud resource consumption, scanning efficiency, etc. (Sentra excels here)

*Pro Tip: Run a proof of concept (POC) across multiple environments to test scalability, accuracy, and operational cost effectiveness before full deployment.

Final Thoughts: DSPM Is About Action

The best DSPM tools in 2026 share one core principle, they help organizations move from visibility to action.

At Sentra, we believe that the future of DSPM lies in continuous, automated data protection:

  • Real-time discovery of sensitive data @ scale
  • Context-aware prioritization for business insight
  • Automated remediation that reduces risk instantly

As data continues to power AI, analytics, and innovation, DSPM ensures that innovation never comes at the cost of security. See how Sentra helps leading enterprises protect data across multi-cloud and SaaS environments.

<blogcta-big>

Read More
Gilad Golani
Gilad Golani
November 6, 2025
4
Min Read

How SLMs (Small Language Models) Make Sentra’s AI Faster and More Accurate

How SLMs (Small Language Models) Make Sentra’s AI Faster and More Accurate

The LLM Hype, and What’s Missing

Over the past few years, large language models (LLMs) have dominated the AI conversation. From writing essays to generating code, LLMs like GPT-4 and Claude have proven that massive models can produce human-like language and reasoning at scale.

But here's the catch: not every task needs a 70-billion-parameter model. Parameters are computationally expensive - they require both memory and processing time.

At Sentra, we discovered early on that the work our customers rely on for accurate, scalable classification of massive data flows - isn’t about writing essays or generating text. It’s about making decisions fast, reliably, and cost-effectively across dynamic, real-world data environments. While large language models (LLMs) are excellent at solving general problems, it creates a lot of unnecessary computational overhead.

That’s why we’ve shifted our focus toward Small Language Models (SLMs) - compact, specialized models purpose-built for a single task - understanding and classifying data efficiently. By running hundreds of SLMs in parallel on regular CPUs, Sentra can deliver faster insights, stronger data privacy, and a dramatically lower total cost of AI-based classification that scales with their business, not their cloud bill.

What Is an SLM?

An SLM is a smaller, domain-specific version of a language model. Instead of trying to understand and generate any kind of text, an SLM is trained to excel at a particular task, such as identifying the topic of a document (what the document is about or what type of document it is), or detecting sensitive entities within documents, such as passwords, social security numbers, or other forms of PII.

In other words: If an LLM is a generalist, an SLM is a specialist. At Sentra, we use SLMs that are tuned and optimized for security data classification, allowing them to process high volumes of content with remarkable speed, consistency, and precision. These SLMs are based on standard open source models, but trained with data that was curated by Sentra, to achieve the level of accuracy that only Sentra can guarantee.

From LLMs to SLMs: A Strategic Evolution

Like many in the industry, we started by testing LLMs to see how well they could classify and label data. They were powerful, but also slow, expensive, and difficult to scale. Over time, it became clear: LLMs are too big and too expensive to run on customer data for Sentra to be a viable, cost effective solution for data classification.

Each SLM handles a focused part of the process: initial categorization, text extraction from documents and images, and sensitive entity classification. The SLMs are not only accurate (even more accurate than LLMs classifying using prompts) - they can run on standard CPUs efficiently, and they run inside the customer’s environment, as part of Sentra’s scanners.

The Benefits of SLMs for Customers

a. Speed and Efficiency

SLMs process data faster because they’re lean by design. They don’t waste cycles generating full sentences or reasoning across irrelevant contexts. This means real-time or near-real-time classification, even across millions of data points.

b. Accuracy and Adaptability

SLMs are pre-trained “zero-shot” language models that can categorize and classify generically, without the need to pre-train on a specific task in advance. This is the meaning of “zero shot” - it means that regardless of the data it was trained on, the model can classify an arbitrary set of entities and document labels without training on each one specifically. This is possible due to the fact that language models are very advanced, and they are able to capture deep natural language understanding at the training stage.

Regardless of that, Sentra fine tunes these models to further increase the accuracy of the classification, by curating a very large set of tagged data that resembles the type of data that our customers usually run into.

Our feedback loops ensure that model performance only gets better over time - a direct reflection of our customers’ evolving environments.

c. Cost and Sustainability

Because SLMs are compact, they require less compute power, which means lower operational costs and a smaller carbon footprint. This efficiency allows us to deliver powerful AI capabilities to customers without passing on the heavy infrastructure costs of running massive models.

d. Security and Control

Unlike LLMs hosted on external APIs, SLMs can be run within Sentra’s secure environment, preserving data privacy and regulatory compliance. Customers maintain full control over their sensitive information - a critical requirement in enterprise data security.

A Quick Comparison: SLMs vs. LLMs

The difference between SLMs and LLMs becomes clear when you look at their performance across key dimensions:

Factor SLMs LLMs
Speed Fast, optimized for classification throughput Slower and more compute-intensive for large-scale inference
Cost Cost-efficient Expensive to run at scale
Accuracy (for simple tasks) Optimized for classification Comparable but unnecessary overhead
Deployment Lightweight, easy to integrate Complex and resource-heavy
Adaptability (with feedback) Continuously fine-tuned, ability to fine tune per customer Harder to customize, fine-tuning costly
Best Use Case Classification, tagging, filtering Reasoning and analysis, generation, synthesis

Continuous Learning: How Sentra’s SLMs Grow

One of the most powerful aspects of our SLM approach is continuous learning. Each Sentra customer project contributes valuable insights, from new data patterns to evolving classification needs. These learnings feed back into our training workflows, helping us refine and expand our models over time.

While not every model retrains automatically, the system is built to support iterative optimization: as our team analyzes feedback and performance, models can be fine-tuned or extended to handle new categories and contexts.

The result is an adaptive ecosystem of SLMs that becomes more effective as our customer base and data diversity grow, ensuring Sentra’s AI remains aligned with real-world use cases.

Sentra’s Multi-SLM Architecture

Sentra’s scanning technology doesn’t rely on a single model. We run many SLMs in parallel, each specializing in a distinct layer of classification:

  1. Embedding models that convert data into meaningful vector representations
  2. Entity Classification models that label sensitive entities
  3. Document Classification models that label documents by type
  4. Image-to-text and speech-to-text models that are able to process non-textual data into textual data

This layered approach allows us to operate at scale - quickly, cheaply, and with great results. In practice, that means faster insights, fewer errors, and a more responsive platform for every customer.

The Future of AI Is Specialized

We believe the next frontier of AI isn’t about who can build the biggest model, it’s about who can build the most efficient, adaptive, and secure ones.

By embracing SLMs, Sentra is pioneering a future where AI systems are purpose-built, transparent, and sustainable. Our approach aligns with a broader industry shift toward task-optimized intelligence - models that do one thing extremely well and can learn continuously over time.

Conclusion: The Power of Small

At Sentra, we’ve learned that in AI, bigger isn’t always better. Our commitment to SLMs reflects our belief that efficiency, adaptability, and precision matter most for customers. By running thousands of small, smart models rather than a single massive one, we’re able to classify data faster, cheaper, and with greater accuracy - all while ensuring customer privacy and control.

In short: Sentra’s SLMs represent the power of small, and the future of intelligent classification.

<blogcta-big>

Read More
Aarti Gadhia
Aarti Gadhia
October 27, 2025
3
Min Read
Data Security

My Journey to Empower Women in Cybersecurity

My Journey to Empower Women in Cybersecurity

Finding My Voice: From Kenya to the Global Stage

I was born and raised in Kenya, the youngest of three and the only daughter. My parents, who never had the chance to finish their education, sacrificed everything to give me opportunities they never had. Their courage became my foundation.

At sixteen, my mother signed me up to speak at a community event, without telling me first! I stood before 500 people and spoke about something that had long bothered me: there were no women on our community board. That same year, two women were appointed for the first time in our community’s history. This year, I was given the recognition for being a Community Leader at the Global Gujrati Gaurav Awards in BC for my work in educating seniors on cyber safety and helping many immigrants secure jobs.

I didn’t realize it then, but that moment would define my purpose: to speak up for those whose voices aren’t always heard.

From Isolation to Empowerment

When I moved to the UK to study Financial Economics, I faced a different kind of challenge - isolation. My accent made me stand out, and not always in a good way. There were times I felt invisible, even rejected. But I made a promise to myself in those lonely moments that no one else should feel the same way.

Years later, as a founding member of WiCyS Western Affiliate, I helped redesign how networking happens at cybersecurity events. Instead of leaving it to chance, we introduced structured networking that ensured everyone left with at least one new connection. It was a small change, but it made a big difference. Today, that format has been adopted by organizations like ISC2 and ISACA, creating spaces where every person feels they belong. 

Breaking Barriers and Building SHE

When I pivoted into cybersecurity sales after moving to Canada, I encountered another wall. I applied for a senior role and failed a personality test, one that unfairly filtered out many talented women. I refused to accept that. I focused on listening, solving real customer challenges, and eventually became the top seller. That success helped eliminate the test altogether, opening doors for many more women who came after me. That experience planted a seed that would grow into one of my proudest initiatives: SHE (Sharing Her Empowerment).

It started as a simple fireside chat on diversity and inclusion - just 40 seats over lunch. Within minutes of sending the invite, we had 90 people signed up. Executives moved us into a larger room, and that event changed everything. SHE became our first employee resource group focused on empowering women, increasing representation in leadership, and amplifying women’s voices within the organization. Even with just 19% women, we created a ripple effect that reached the boardroom and beyond.

SHE showed me that when women stand together, transformation happens.

Creating Pathways for the Next Generation

Mentorship has always been close to my heart. During the pandemic, I met incredible women, who were trying to break into cybersecurity but kept facing barriers. I challenged hiring norms, advocated for fair opportunities, and helped launch internship programs that gave women hands-on experience. Today, many of them are thriving in their cyber careers, a true reflection of what’s possible when we lift as we climb.

Through Standout to Lead, I partnered with Women Get On Board to help women in cybersecurity gain board seats. Watching more women step into decision-making roles reminds me that leadership isn’t about titles, it’s about creating pathways for others.

Women in Cybersecurity: Our Collective Story

This year, I’m deeply honored to be named among the Top 20 Cybersecurity Women of the World by the United Cybersecurity Alliance. Their mission - to empower women, elevate diverse voices, and drive equity in our field, mirrors everything I believe in.

I’m also thrilled to be part of the upcoming documentary premiere, “The WOMEN IN SECURITY Documentary,” proudly sponsored by Sentra, Amazon WWOS, and Pinkerton among others. This film shines a light on the fearless women redefining what leadership looks like in our industry.

As a member of Sentra’s community, I see the same commitment to visibility, inclusion, and impact that has guided my journey. Together, we’re not just securing data, we’re securing the future of those who will lead next.

Asante Sana – Thank You

My story, my safari, is still being written. I’ve learned that impact doesn’t come from perfection, but from purpose. Whether it’s advocating for fairness, mentoring the next generation, or sharing our stories, every step we take matters.

To every woman, every underrepresented voice in STEM, and everyone who’s ever felt unseen - stay authentic, speak up, and don’t be afraid of the outcome. You might just change the world.

Join me and the Sentra team at The WOMEN IN SECURITY Documentary Premiere, a celebration of leadership, resilience, and the voices shaping the future of our industry.

Save your seat at The Women in Security premiere here (spots are limited).

Follow Sentra on LinkedIn and YouTube for more updates on the event and stories that inspire change.

<blogcta-big>

Read More
decorative ball
Expert Data Security Insights Straight to Your Inbox
What Should I Do Now:
1

Get the latest GigaOm DSPM Radar report - see why Sentra was named a Leader and Fast Mover in data security. Download now and stay ahead on securing sensitive data.

2

Sign up for a demo and learn how Sentra’s data security platform can uncover hidden risks, simplify compliance, and safeguard your sensitive data.

3

Follow us on LinkedIn, X (Twitter), and YouTube for actionable expert insights on how to strengthen your data security, build a successful DSPM program, and more!

Before you go...

Get the Gartner Customers' Choice for DSPM Report

Read why 98% of users recommend Sentra.

Gartner Certificate for Sentra